Subcarrier wave continuous-variable quantum key distribution with Gaussian modulation: composable security analysis

Автор: Goncharov Roman Konstantinovich, Kiselev Alexei Donislavovich, Samsonov Eduard Olegovich, Egorov Vladimir Ilyich

Журнал: Компьютерная оптика @computer-optics

Рубрика: Дифракционная оптика, оптические технологии

Статья в выпуске: 3 т.47, 2023 года.

Бесплатный доступ

In this paper, we continue the study of the quantum cryptographic GG02 protocol, performed using the approach based on the subcarrier waves. We modify the scheme via heterodyne detection and perform security analysis for the full trusted hardware noise model in the presence of collective attacks with finite-key effects. It is shown that the system can potentially distribute the key even if the level of losses in the channel is above 9 dB. This result is consistent with the general technical level and comply with modern standards of practical CV-QKD systems. Finally, the system under consideration fully meets the criterion of composability.

Еще

Continuous variables, subcarrier waves, quantum key distribution

Короткий адрес: https://sciup.org/140300059

IDR: 140300059   |   DOI: 10.18287/2412-6179-CO-1225

Список литературы Subcarrier wave continuous-variable quantum key distribution with Gaussian modulation: composable security analysis

  • Pirandola S, Andersen UL, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira JL, Razavi M, Shamsul Shaari J, Tomamichel M, Usenko VC, Vallone G, Villoresi P, Wallden P. Advances in quantum cryptography. Adv Opt Photonics 2020; 12(4): 1012. DOI: 10.1364/AOP.361502.
  • Bennett CH, Brassard G. Quantum cryptography: Public key distribution and coin tossing. Theor Comput Sci 2014; 560: 7-11. DOI: 10.1016/j.tcs.2014.05.025.
  • Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf NJ, Grangier P. Quantum key distribution using gaussianmodulated coherent states. Nature 2003; 421(6920): 238-241. DOI: 10.1038/nature01289.
  • Merolla J-M, Mazurenko YT, Goedgebuer J-P, Duraffourg L, Porte H, Rhodes WT. Quantum cryptographic device using single-photon phase modulation. Physical Review A 1999; 60(3): 1899. DOI: 10.1103/PhysRevA.60.1899.
  • Merolla J-M, Mazurenko Y, Goedgebuer J-P, Rhodes WT. Single-photon interference in sidebands of phasemodulated light for quantum cryptography. Phys Rev Lett 1999; 82(8): 1656. DOI: 10.1103/PhysRevLett.82.1656.
  • Ortigosa-Blanch A, Capmany J. Subcarrier multiplexing optical quantum key distribution. Phys Rev A 2006; 73: 024305. DOI: 10.1103/PhysRevA.73.024305.
  • Mora J, Ruiz-Alba A, Amaya W, Martínez A, García- Muñoz V, Calvo D, Capmany J. Experimental demonstration of subcarrier multiplexed quantum key distribution system. Opt Lett 2012; 37(11): 2031-2033. DOI: 10.1364/OL.37.002031.
  • Mora J, Amaya W, Ruiz-Alba A, Martinez A, Calvo D, Muñoz VG, Capmany J. Simultaneous transmission of 20x2 WDM/SCM-QKD and 4 bidirectional classical channels over a PON. Opt Express 2012; 20(15): 16358-16365. DOI: 10.1364/OE.20.016358.
  • Gleim AV, Egorov VI, Nazarov YV, Smirnov SV, Chistyakov VV, Bannik OI, Anisimov AA, Kynev SM, Ivanova AE, Collins RJ, Kozlov SA, Buller GS. Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference. Opt Express 2016; 24(3): 2619-2633. DOI: 10.1364/OE.24.002619.
  • Miroshnichenko GP, Kozubov AV, Gaidash AA, Gleim AV, Horoshko DB. Security of subcarrier wave quantum key distribution against the collective beam-splitting attack. Opt Express 2018; 26(9): 11292-11308. DOI: 10.1364/OE.26.011292.
  • Kynev S, Chistyakov V, Smirnov S, Volkova K, Egorov V, Gleim A. Free-space subcarrier wave quantum communication. J Phys Conf Ser 2017; 917: 052003. DOI: 10.1088/1742-6596/917/5/052003.
  • Samsonov E, Goncharov R, Gaidash A, Kozubov A, Egorov V, Gleim A. Subcarrier wave continuous variable quantum key distribution with discrete modulation: mathematical model and finite-key analysis. Sci Rep 2020; 10(1): 10034. DOI: 10.1038/s41598-020-66948-0.
  • Samsonov E, Goncharov R, Fadeev M, Zinoviev A, Kirichenko D, Nasedkin B, Kiselev AD, Egorov V. Coherent detection schemes for subcarrier wave continuous variable quantum key distribution. J Opt Soc Am B 2021; 38(7): 2215-2222. DOI: 10.1364/JOSAB.424516.
  • Goncharov R, Samsonov E, Kiselev AD. Subcarrier wave quantum key distribution system with Gaussian modulation. J Phys Conf Ser 2021; 2103(1): 012169. DOI: 10.1088/1742-6596/2103/1/012169.
  • Leverrier A. Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction. Phys Rev Lett 2017; 118(20): 200501. DOI: 10.1103/PhysRevLett.118.200501.
  • Kumar P, Prabhakar A. Evolution of quantum states in an electro-optic phase modulator. IEEE J Quantum Electron 2008; 45(2): 149-156. DOI: 10.1109/JQE.2008.2002673.
  • Capmany J, Fernández-Pousa CR. Quantum model for electro-optical phase modulation. J Opt Soc Am B 2010; 27(6): A119-A129. DOI: 10.1364/JOSAB.27.00A119.
  • Miroshnichenko GP, Kiselev AD, Trifanov AI, Gleim AV. Algebraic approach to electro-optic modulation of light: exactly solvable multimode quantum model. J Opt Soc Am B 2017; 34(6): 1177-1190. DOI: 10.1364/JOSAB.34.001177.
  • Horoshko D, Eskandary M, Kilin SY. Quantum model for traveling-wave electro-optical phase modulator. J Opt Soc Am B 2018; 35(11): (2018) 2744-2753. DOI: 10.1364/JOSAB.35.002744.
  • Varshalovich DA, Moskalev AN, Khersonskii VK. Quantum theory of angular momentum. World Scientific Publishing Co Pte Ltd; 1988.
  • Grosshans F, Grangier P. Continuous variable quantum cryptography using coherent states. Phys Rev Lett 2002; 88(5): 057902. DOI: 10.1103/PhysRevLett.88.057902.
  • Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P, Diamanti E. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat Photonics 2013; 7(5): 378-381. DOI: 10.1038/nphoton.2013.63.
  • Diamanti E, Leverrier A. Distributing secret keys with quantum continuous variables: Principle, security and implementations. Entropy 2015; 17(9): 6072-6092. DOI: 10.3390/e17096072.
  • Fang J, Huang P, Zeng G. Multichannel parallel continuous-variable quantum key distribution with Gaussian modulation. Phys Rev A 2014; 89(2): 022315. DOI: 10.1103/PhysRevA.89.022315.
  • Weedbrook C, Pirandola S, García-Patrón R, Cerf NJ, Ralph TC, Shapiro JH, Lloyd S. Gaussian quantum information. Rev Mod Phys 2012; 84(2): 621-669. DOI: 10.1103/RevModPhys.84.621.
  • Weedbrook C, Lance AM, Bowen WP, Symul T, Ralph TC, Lam PK. Quantum cryptography without switching, Phys Rev Lett 2004; 93(17): 170504. DOI: 10.1103/PhysRevLett.93.170504.
  • Jouguet P, Kunz-Jacques S, Leverrier A. Long-distance continuous-variable quantum key distribution with a Gaussian modulation. Phys Rev A 2011; 84(6): 062317. DOI: 10.1103/PhysRevA.84.
  • Jain N, Chin H-M, Mani H, et al. Practical continuousvariable quantum key distribution with composable security. Nat Commun 2022; 13(1): 4740. DOI: 10.1038/s41467-022-32161-y.
  • Laudenbach F, Pacher C, Fung C-HF, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H. Continuousvariable quantum key distribution with Gaussian modulation–The theory of practical implementations. Adv Quantum Technol 2018; 1(1): 1800011. DOI: 10.1002/qute.201800011.
  • Usenko V, Filip R. Trusted noise in continuous-variable quantum key distribution: A threat and a defense. Entropy 2016; 18(1): 20. DOI: 10.3390/e18010020.
  • Laudenbach F, Pacher C. Analysis of the trusted-device scenario in continuous-variable quantum key distribution. Adv Quantum Technol 2019; 2(11): 1900055. DOI: 10.1002/qute.201900055.
  • Holevo AS. Bounds for the quantity of information transmitted by a quantum communication channel. Problemy Peredachi Informatsii 1973; 9(3): 3-11.
  • Grosshans F, Cerf NJ, Wenger J, Tualle-Brouri R, Grangier P. Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables. Quantum Inf Comput 2003; 3(7): 535-552. DOI: 10.5555/2011564.2011570.
  • Navascués M, Grosshans F, Acín A. Optimality of Gaussian attacks in continuous-variable quantum cryptography. Phys Rev Lett 2006; 97(19): 190502. DOI: 10.1103/PhysRevLett.97.190502.
  • García-Patrón R, Cerf NJ. Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys Rev Lett 2006; 97(19): 190503. DOI: 10.1103/PhysRevLett.97.190503.
  • Devetak I, Winter A. Distillation of secret key and entanglement from quantum states. Proc Math Phys Eng Sci 2005; 461(2053): 207-235. DOI: 10.1098/rspa.2004.1372.
  • Pirandola S. Limits and security of free-space quantum communications. Phys Rev Res 2021; 3(1): 013279. DOI: 10.1103/PhysRevResearch.3.013279.
  • Pirandola S. Composable security for continuous variable quantum key distribution: Trust levels and practical key rates in wired and wireless networks. Phys Rev Res 2021; 3(4): 043014. DOI: 10.1103/PhysRevResearch.3.043014.
  • Leverrier A. Composable security proof for continuousvariable quantum key distribution with coherent states. Phys Rev Lett 2015; 114(7): 070501. DOI: 10.1103/PhysRevLett.114.070501.
  • Leverrier A, Grosshans F, Grangier P. Finite-size analysis of a continuous-variable quantum key distribution. Phys Rev A 2010; 81(6): 062343. DOI: 10.1103/PhysRevA.81.062343.
  • Tomamichel M, Colbeck R, Renner R. A fully quantum asymptotic equipartition property. IEEE Trans Inf Theory 2009; 55(12): 5840-5847. DOI: 10.1109/TIT.2009.2032797.
  • Goncharov RK, Kiselev AD, Samsonov EO, Egorov VI. Continuous-variable quantum key distribution: security analysis with trusted hardware noise against general attacks. Nanosystems: Physics, Chemistry, Mathematics 2022; 13(4): 372-391. DOI: 10.17586/2220-8054-2022-13-4-372-391.
Еще
Статья научная