Super-resolution microscopy based on interpolation and wide spectrum de-noising
Автор: Cheng T., Chenchen T.
Журнал: Компьютерная оптика @computer-optics
Рубрика: Обработка изображений, распознавание образов
Статья в выпуске: 4 т.47, 2023 года.
Бесплатный доступ
In the conventional single-molecule localizations and super-resolution microscopy, the pixel size of a raw image is approximately equal to the standard deviation of the point spread function. Such a raw image is referred to herein as a conventional raw image, based on which better single molecule localization effect and efficiency can be achieved. It is found that both interpolation and de-noising can effectively improve the Signal to Noise Ratio of the conventional raw image. The conventional raw image, the de-noised, the interpolated and the de-noised interpolated are compared and analyzed and compressed sensing is used for super-resolution reconstruction. The simulation results show that both the highest Signal to Noise Ratio and the best super-resolution reconstruction can be obtained by de-noising the interpolated conventional raw image. This method also renders the best super-resolution reconstruction and minimum gradient in the real experiment. De-noising the interpolated conventional raw image is an effective method to improve the super-resolution microscopy.
Super-resolution microscopy, interpolation, denoising, point spread function, compressed sensing
Короткий адрес: https://sciup.org/140301835
IDR: 140301835 | DOI: 10.18287/2412-6179-CO-1272
Список литературы Super-resolution microscopy based on interpolation and wide spectrum de-noising
- Gabitto MI, Marie-Nellie H, Pakman A, Pataki A, Darzacq X, Jordan MI. A Bayesian nonparametric approach to super-resolution single-molecule localization. Ann Appl Stat 2021; 15(4): 1742-1766. DOI: 10.1214/21-AOAS1441.
- Nevskyi O, Tsukanov R, Gregor I, Karedla N, Enderlein J. Fluorescence polarization filtering for accurate single molecule localization. APL Photon 2020; 5(6): 061302. DOI: 10.1063/5.0009904.
- Costello I, Cox S. Analysing errors in single-molecule localisation microscopy. Int J Biochem Cell Biol 2021; 27(2): 105931. DOI: 10.1016/j.biocel.2021.105931.
- Rimoli CV, Valades-Cruz CA, Curcio V, Mavrakis M, Brasselet S. 4polar-STORM polarized super-resolution imaging of actin filament organization in cells. Nat Commun 2022; 13(1): 301. DOI: 10.1038/s41467-022-27966-w.
- Kwon J, Elgawish MS, Shim SH. Bleaching-resistant super-resolution fluorescence microscopy. Adv Sci 2022; 9(9): 2101917. DOI: 10.1002/advs.202101817.
- Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, Mhlanga MM. QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 2010; 7(5): 339-340. DOI: 10.1038/nmeth0510-339.
- Kozma E, Kele P. Fluorogenic probes for super-resolution microscopy. Org Biomol Chem 2019; 15(17): 215-233. DOI: 10.1039/c8ob02711k.
- Chung J, Jeong U, Jeong D, Go S, Kim D. Development of a new approach for low-laser-power super-resolution fluorescence imaging. Anal Chem 2021; 101(94): 618-627. DOI: 10.1021/acs.analchem.1c01047.
- Jeong D, Kim D. Super-resolution fluorescence microscopy-based single-molecule spectroscopy. Bulletin of the Korean Chemical Society 2022; 43(12): 316-327. DOI: 10.1002/bkcs.12471.
- Roa C, Le VND, Mahendroo M, Saytashev I, RamellaRoman JC. Auto-detection of cervical collagen and elastin in Mueller matrix polarimetry microscopic images using. Biomed Opt Express 2021; 12(4): 2236-2249. DOI: 10.1364/BOE.420079.
- Holden SJ, Uphoff S, Kapanidis AN. DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat Methods 2011; 8(4): 279-280. DOI: 10.1038/nmeth0411-279.
- Junhong M, Cedric V, Hagai K, Lina C, Nicolas O, Seamus H, Suliana M, Chul YJ, Michael U. FALCON: fast and unbiased reconstruction of high-density superresolution microscopy data. Sci Rep 2014; 4(4): 4577. DOI: 10.1038/srep04577.
- Zhu L, Zhang W, Elnatan D, Huang B. Faster STORM using compressed sensing. Nat Methods 2012; 9(7): 721723. DOI: 10.1038/nmeth.1978.
- Cheng T, Chen DN, Yu B, Niu HB. Reconstruction of super-resolution STORM images using compressed sensing based on low-resolution raw images and interpolation. Biomed Opt Express 2017; 8(5): 2445-2457. DOI: 10.1364/B0E.8.002445.
- Arjoune Y, Kaabouch N, Ghazi HE, Tamtaoui A. A performance comparison of measurement matrices in compressive sensing. Int J Commun Syst 2018; 31(2): e3576. DOI: 10.1002/dac.3576.
- Calisesi G, Ghezzi A, Ancora D, D'Andrea C, Valentini G, Farina A, Bassi A. Compressed sensing in fluorescence microscopy. Prog Biophys Mol Biol 2022; 60(6): 66-80. DOI: 10.1016/j.pbiomolbio.2021.06.004.
- Thompson RE, Larson DR, Webb WW. Precise nanometer localization analysis for individual fluorescent probes. Biophys J 2002; 43(82): 2775-2783. DOI: 10.1016/s0006-3495(02)75618-x.
- Cheng T, Chen DN, Li H. Wide spectrum denoising (WSD) for superresolution microscopy imaging using compressed sensing and a high-resolution camera. J Phys Conf Ser 2020; 1651: 012177. DOI: 10.1088/17426596/1651/1/012177.
- Beier HT, Ibey BL. Experimental comparison of the highspeed imaging performance of an EM-CCD and sCMOS camera in a dynamic live-cell imaging test case. PLoS ONE 2014; 18(9): e84614. DOI: 10.1371/journal.pone.0084614.
- Cheng T. Wide spectrum denoising method for microscopic images. US Patent 16845110 of July 2, 2022.
- Lee G, Oh JW, Her NG, Jeong WK. DeepHCS ++ : Bright-field to fluorescence microscopy image conversion using multi-task learning with adversarial losses for labelfree high-content screening. Med Image Anal 2021; 70: 101995. DOI: 10.1016/j.media.2021.101995.