Sustainable municipal solid waste incineration fly ash (MSWIFA) alkali-activated materials in construction: fabrication and performance

Бесплатный доступ

Introduction. Recent years have seen a pressing need to dispose of municipal solid waste due to rapid urbanization. The municipal solid waste incineration fly ash (MSWIFA) produced from solid waste incineration power plant exhibits pozzolanic properties and poses concern of toxicity leaching when used directly as building materials. This paper presents an alkali-activation method to produce sustainable alkali-activated MSWIFA materials (AAFMs) with various MSWIFA dosages and investigate the corresponding fabrication and performance. Materials and Methods. Composited alkali activators activate the MSWIFA with constant alkalinity of 5% and the molar ratio of Si/Na = 0.86. The resulting geopolymers' bulk densities, mineral composites, morphology, and compression strength are thoroughly examined. Results and discussions. Results show that the use of MSWIFA may lead to more loose structures because the bubbles are generated from metallic aluminum and alkali activators. Additionally, the production of multiple crystals also accounts for increasing porosity. The generated multi-crystals such as Sylvite, Halite, Hydrocalumite, Calcium Hydroxide, and Ettringite are further detected from the morphology and mineral analysis. Furthermore, compression tests and toxicity characteristic leaching procedures (TCLP) are conducted to investigate the mechanical performance and heavy metals solidification performance of AAFMs, with an optimal compression strength of 19.99MPa at 28 days for AAFM-10 while toxicity leaching is subject to regularity limits. Conclusions. This study shows that great potential of using the alkali-activation method to recycle hazardous municipal solid fly ash into construction materials with both ecological safety and high performance.

Еще

Municipal solid waste fly ash, alkali-activation, mineral analysis, morphography, compression strength, toxicity leaching

Короткий адрес: https://sciup.org/142231840

IDR: 142231840   |   DOI: 10.15828/2075-8545-2022-14-1-43-52

Список литературы Sustainable municipal solid waste incineration fly ash (MSWIFA) alkali-activated materials in construction: fabrication and performance

  • X. Sun, J. Li, X. Zhao, B. Zhu, G. Zhang, A Review on the Management of Municipal Solid Waste Fly Ash in American, Procedia Environmental Sciences. 31 (2016) 535–540. https://doi.org/10.1016/j.proenv.2016.02.079.
  • S. Ma, C. Zhou, J. Pan, G. Yang, C. Sun, Y. Liu, X. Chen, Z. Zhao, Leachate from municipal solid waste landfills in a global perspective: Characteristics, influential factors and environmental risks, Journal of Cleaner Production. 333 (2022) 130234. https://doi.org/10.1016/j.jclepro.2021.130234.
  • L.F. Pearse, J.P.A. Hettiaratchi, D. Da Costa, A new biochemical methane potential assay for landfilled waste using the organic fraction of municipal solid waste, Bioresource Technology Reports. 12 (2020) 100579. https://doi.org/10.1016/j.biteb.2020.100579.
  • L. Makarichi, W. Jutidamrongphan, K. Techato, The evolution of waste-to-energy incineration: A review, Renewable and Sustainable Energy Reviews. 91 (2018) 812–821. https://doi.org/10.1016/j.rser.2018.04.088.
  • X. Gao, B. Yuan, Q.L. Yu, H.J.H. Brouwers, Characterization and application of municipal solid waste incineration (MSWI) bottom ash and waste granite powder in alkali activated slag, Journal of Cleaner Production. 164 (2017) 410–419. https://doi.org/10.1016/j.jclepro.2017.06.218.
  • J. Li, Z. Dong, E.-H. Yang, Strain hardening cementitious composites incorporating high volumes of municipal solid waste incineration fly ash, Construction and Building Materials. 146 (2017) 183–191. https://doi.org/10.1016/j.conbuildmat.2017.04.098.
  • K. Yan, F. Gao, H. Sun, D. Ge, S. Yang, Effects of municipal solid waste incineration fly ash on the characterization of cement-stabilized macadam, Construction and Building Materials. 207 (2019) 181–189. https://doi.org/10.1016/j.conbuildmat.2019.02.048.
  • A. Assi, F. Bilo, A. Zanoletti, J. Ponti, A. Valsesia, R. La Spina, A. Zacco, E. Bontempi, Zero-waste approach in municipal solid waste incineration: Reuse of bottom ash to stabilize fly ash, Journal of Cleaner Production. 245 (2020) 118779. https://doi.org/10.1016/j.jclepro.2019.118779.
  • J.L. Provis, Alkali-activated materials, Cement and Concrete Research. 114 (2018) 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009.
  • Z. Tang, W. Li, Y. Hu, J.L. Zhou, V.W.Y. Tam, Review on designs and properties of multifunctional alkaliactivated materials (AAMs), Construction and Building Materials. 200 (2019) 474–489. https://doi.org/10.1016/j.conbuildmat.2018.12.157.
  • K. Tian, Y. Wang, S. Hong, J. Zhang, D. Hou, B. Dong, F. Xing, Alkali-activated artificial aggregates fabricated by red mud and fly ash: Performance and microstructure, Construction and Building Materials. 281 (2021) 122552. https://doi.org/10.1016/j.conbuildmat.2021.122552.
  • D. Hou, D. Wu, X. Wang, S. Gao, R. Yu, M. Li, P. Wang, Y. Wang, Sustainable use of red mud in ultra-high performance concrete (UHPC): Design and performance evaluation, Cement and Concrete Composites. 115 (2021) 103862. https://doi.org/10.1016/j.cemconcomp.2020.103862.
  • P. Tang, W. Chen, D. Xuan, H. Cheng, C.S. Poon, D.C.W. Tsang, Immobilization of hazardous municipal solid waste incineration fly ash by novel alternative binders derived from cementitious waste, Journal of Hazardous Materials. 393 (2020) 122386. https://doi.org/10.1016/j.jhazmat.2020.122386.
  • M. Cyr, R. Idir, G. Escadeillas, Use of metakaolin to stabilize sewage sludge ash and municipal solid waste incineration fly ash in cement-based materials, Journal of Hazardous Materials. 243 (2012) 193–203. https://doi.org/10.1016/j.jhazmat.2012.10.019.
  • L. Chen, L. Wang, D.-W. Cho, D.C.W. Tsang, L. Tong, Y. Zhou, J. Yang, Q. Hu, C.S. Poon, Sustainable stabilization/solidification of municipal solid waste incinerator fly ash by incorporation of green materials, Journal of Cleaner Production. 222 (2019) 335–343. https://doi.org/10.1016/j.jclepro.2019.03.057.
  • W. Zhu, X.H. Rao, Y. Liu, E.-H. Yang, Lightweight aerated metakaolin-based geopolymer incorporating municipal solid waste incineration bottom ash as gas-forming agent, Journal of Cleaner Production. 177 (2018) 775–781. https://doi.org/10.1016/j.jclepro.2017.12.267.
  • A. Maldonado-Alameda, J. Giro-Paloma, A. Svobodova-Sedlackova, J. Formosa, J.M. Chimenos, Municipal solid waste incineration bottom ash as alkali-activated cement precursor depending on particle size, Journal of Cleaner Production. 242 (2020) 118443. https://doi.org/10.1016/j.jclepro.2019.118443.
  • D. Xuan, P. Tang, C.S. Poon, MSWIBA-based cellular alkali-activated concrete incorporating waste glass powder, Cement and Concrete Composites. 95 (2019) 128–136. https://doi.org/10.1016/j.cemconcomp.2018.10.018.
  • Standard for Pollution Control on the Landfill Site of Municipal Solid Waste.Ministry of Environmental Protection of the People’s Republic of China, 2008.
  • X. Tian, F. Rao, C.A. León-Patiño, S. Song, Effects of aluminum on the expansion and microstructure of alkali-activated MSWI fly ash-based pastes, Chemosphere. 240 (2020) 124986. https://doi.org/10.1016/j.chemosphere.2019.124986.
  • Y. Mao, H. Wu, W. Wang, M. Jia, X. Che, Pretreatment of municipal solid waste incineration fly ash and preparation of solid waste source sulphoaluminate cementitious material, Journal of Hazardous Materials. 385 (2020) 121580. https://doi.org/10.1016/j.jhazmat.2019.121580.
  • W.-J. Long, J. Peng, Y. Gu, J. Li, B. Dong, F. Xing, Y. Fang, Recycled use of municipal solid waste incinerator fly ash and ferronickel slag for eco-friendly mortar through geopolymer technology, Journal of Cleaner Production. 307 (2021) 127281. https://doi.org/10.1016/j.jclepro.2021.127281.
  • Y. Jun, T. Kim, J.H. Kim, Chloride-bearing characteristics of alkali-activated slag mixed with seawater: Effect of different salinity levels, Cement and Concrete Composites. 112 (2020) 103680. https://doi.org/10.1016/j.cemconcomp.2020.103680.
  • L. Kan, R. Shi, Y. Zhao, X. Duan, M. Wu, Feasibility study on using incineration fly ash from municipal solid waste to develop high ductile alkali-activated composites, Journal of Cleaner Production. 254 (2020) 120168. https://doi.org/10.1016/j.jclepro.2020.120168.
  • K. Yin, X. Dou, W.-P. Chan, V.W.-C. Chang, Comparative leaching characteristics of fly/bottom ashes from municipal solid waste incineration under various environmental stresses, J Mater Cycles Waste Manag. 22 (2020) 46–55. https://doi.org/10.1007/s10163-019-00915-4.
  • G. Weibel, U. Eggenberger, S. Schlumberger, U.K. Mäder, Chemical associations and mobilization of heavy metals in fly ash from municipal solid waste incineration, Waste Management. 62 (2017) 147–159. https://doi.org/10.1016/j.wasman.2016.12.004.
  • Ivanov L.A., Bokova E.S., Muminova S.R., Katuhin L.F. Nanotechnologies: a review of inventions and utility models. Part I. Nanotechnologies in Construction. 2020, Vol. 12, no. 1, pp. 27–33. DOI: 10.15828/2075-8545-2020-12-1-27-33.
  • Ivanov LA., Kapustin I.A., Borisova O.N., Pisarenko Zh.V. Nanotechnologies: a review of inventions and utility models. Part II. Nanotechnologies in Construction. 2020, Vol. 12, no. 2, pp. 71–76. DOI: 10.15828/2075-8545-2020-12-2-71-76.
  • Ivanov LA., Demenev A.V., Pisarenko Zh.V., Wang Q., Nanotechnologies: a review of inventions and utility models. Part III. Nanotechnologies in Construction. 2020, Vol. 12, no. 3, pp. 140–146. DOI: 10.15828/2075-8545-2020-12-3-140-146.
  • Ivanov L.A., Ishkov A.D., Pisarenko Zh.V., Wang Q., Prokopiev P.S. Nanotechnologies: a review of inventions and utility models. Part IV. Nanotechnologies in Construction. 2020;12(5): 275–284. Available from: doi: 10.15828/2075-8545-2020-12-5-275-284.
  • Ivanov L.A., Xu L.D., Bokova E.S., Ishkov A.D., Muminova S.R. Nanotechnologies: are view of inventions and utility models. Part V. Nanotechnologies in Construction. 2020; 12(6): 331–338. Available from: doi: 10.15828/2075-8545-2020-12-6-331-338.
Еще
Статья научная