Свободные колебания вязкоупругой изотропной пластины с отрицательным коэффициентом Пуассона

Автор: Абдикаримов Р.А., Ватин Н.И., Ходжаев Д.А.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 7 (105), 2022 года.

Бесплатный доступ

Рассматриваются колебания вязкоупругих изотропных прямоугольных пластин ауксетичного метаматериала в линейной постановке. Задача описывается линейным интегродифференциальным уравнением в частных производных с начальными и граничными условиями. Используется слабосингулярное релаксационное ядро ​​Колтунова-Ржаницына. С помощью метода Бубнова-Галеркина полученное уравнение сводится к линейному обыкновенному интегродифференциальному уравнению относительно функции времени. Это уравнение решается численным методом, основанным на использовании квадратурных формул, исключающих сингулярности в релаксационном ядре. Изучается влияние на амплитудно-частотную характеристику колебаний вязкоупругой изотропной прямоугольной пластины метаматериала отрицательного коэффициента Пуассона.

Еще

Вязкоупругость, ползучесть, метод Бубнова-Галеркина, численные методы, интегро-дифференциальные уравнения, тонкостенная конструкция, линейные колебания, пластины, уравнения движения, аустетика

Короткий адрес: https://sciup.org/143182684

IDR: 143182684   |   DOI: 10.4123/CUBS.105.2

Список литературы Свободные колебания вязкоупругой изотропной пластины с отрицательным коэффициентом Пуассона

  • Bohara, R.P., Linforth, S., Nguyen, T., Ghazlan, A., Ngo, T. Anti-blast and -impact performances of auxetic structures: A review of structures, materials, methods, and fabrications. Engineering Structures. 2023. 276. DOI:10.1016/j.engstruct.2022.115377. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143774800&doi=10.1016%2Fj.engstruct.2022.115377&partnerID=40&md5=c95bf5726db7642e752633455fce9ca4.
  • Skripnyak, V. V, Chirkov, M.O., Skripnyak, V.A. Modeling the Mechanical Response of Auxetic Metamaterials to Dynamic Effects. PNRPU Mechanics Bulletin. 2021. (2). Pp. 144–152. DOI:10.15593/perm.mech/2021.2.13. URL: https://ered.pstu.ru/index.php/mechanics/article/view/1786 (date of application: 22.03.2023).
  • Qi, C., Jiang, F., Yang, S. Advanced honeycomb designs for improving mechanical properties: A review. Composites Part B: Engineering. 2021. 227. Pp. 109393. DOI:10.1016/j.compositesb.2021.109393. URL: https://linkinghub.elsevier.com/retrieve/pii/S1359836821007642.
  • Wei, L., Zhao, X., Yu, Q., Zhang, W., Zhu, G. In-plane compression behaviors of the auxetic star honeycomb: Experimental and numerical simulation. Aerospace Science and Technology. 2021. 115. DOI:10.1016/j.ast.2021.106797. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106310029&doi=10.1016%2Fj.ast.2021.106797&partnerID=40&md5=454bbcacb7b5c2ef56ee343d5a7e5ff1.
  • Sun, N., Wang, S., Zhou, K., Ma, W., Xu, B. FEA and Quasi-static Test on Energy Absorption Characteristic of Space Orthogonal Concave Honeycomb Structure with Negative Poisson’s Ratio. Journal of Physics: Conference Series. 2022. 2160(1). DOI:10.1088/1742-6596/2160/1/012064. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124232544&doi=10.1088%2F1742-6596%2F2160%2F1%2F012064&partnerID=40&md5=1708e8da496e5960d927fd90268486e9.
  • Wei, Y.-C., Tian, M.-J., Huang, C.-Y., Wang, S.-W., Li, X., Hu, Q.-R., Yuan, M.-Q. Topological study about failure behavior and energy absorption of honeycomb structures under various strain rates. Defence Technology. 2022. DOI:10.1016/j.dt.2022.03.011.
  • Wang, Y., He, Q., Chen, Y., Gu, H., Zhou, H. In-plane dynamic crushing of a novel bio-inspired re-entrant honeycomb with negative Poisson’s ratio. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2021. 43(10). DOI:10.1007/s40430-021-03169-0.
  • Michalski, J., Strek, T. Blast resistance of sandwich plate with auxetic anti-tetrachiral core. Vibrations in Physical Systems. 2020. 31(3). Pp. 1–8. DOI:10.21008/j.0860-6897.2020.3.16. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098241564&doi=10.21008%2Fj.0860-6897.2020.3.16&partnerID=40&md5=57d64c22f2629538c2b64b50a35749ab.
  • Luo, F., Zhang, S., Yang, D. Anti-explosion performance of composite blastwall with an auxetic re-entrant honeycomb core for offshore platforms. Journal of Marine Science and Engineering. 2020. 8(3). DOI:10.3390/jmse8030182.
  • Sun, X., Tao, X., Wang, X., Li, J., Wang, L. Research on explosion-proof characteristics and optimization design of negative Poisson’s ratio honeycomb material [负泊松比蜂窝材料抗爆炸特性及优化设计研究]. Baozha Yu Chongji/Explosion and Shock Waves. 2020. 40(9). DOI:10.11883/bzycj-2020-0011.
  • Lv, W., Li, D., Dong, L. Study on blast resistance of a composite sandwich panel with isotropic foam core with negative Poisson’s ratio. International Journal of Mechanical Sciences. 2021. 191. DOI:10.1016/j.ijmecsci.2020.106105.
  • Kalubadanage, D., Remennikov, A., Ngo, T., Qi, C. Close-in blast resistance of large-scale auxetic re-entrant honeycomb sandwich panels. Journal of Sandwich Structures and Materials. 2021. 23(8). Pp. 4016–4053. DOI:10.1177/1099636220975450.
  • Luo, F., Yang, D. Protection performance analysis of auxetic structures under continuous explosive impact [连续爆炸冲击下负泊松比超材料防护结构性能研究]. Zhendong yu Chongji/Journal of Vibration and Shock. 2022. 41(2). Pp. 74–78 and 112. DOI:10.13465/j.cnki.jvs.2022.02.009. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124479328&doi=10.13465%2Fj.cnki.jvs.2022.02.009&partnerID=40&md5=5ddf6aaf16b7c84200250cb6ef58d7cc.
  • Lakes, R. Foam Structures with a Negative Poisson’s Ratio. Science. 1987. 235(4792). Pp. 1038–1040. DOI:10.1126/science.235.4792.1038. URL: https://www.science.org/doi/10.1126/science.235.4792.1038.
  • Meena, K., Singamneni, S. A new auxetic structure with significantly reduced stress concentration effects. Materials & Design. 2019. 173. Pp. 107779. DOI:10.1016/j.matdes.2019.107779. URL: https://linkinghub.elsevier.com/retrieve/pii/S0264127519302163.
  • Wu, W., Hu, W., Qian, G., Liao, H., Xu, X., Berto, F. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review. Materials & Design. 2019. 180. Pp. 107950. DOI:10.1016/j.matdes.2019.107950.
  • Harris, J.A., McShane, G.J. Metallic stacked origami cellular materials: Additive manufacturing, properties, and modelling. International Journal of Solids and Structures. 2020. 185–186. Pp. 448–466. DOI:10.1016/j.ijsolstr.2019.09.007. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072613283&doi=10.1016%2Fj.ijsolstr.2019.09.007&partnerID=40&md5=6fa36b17886b7be20e3de93ebc877d77.
  • Chen, G., Zhang, P., Deng, N., Cai, S., Cheng, Y., Liu, J. Paper tube-guided blast response of sandwich panels with auxetic re-entrant and regular hexagonal honeycomb cores – An experimental study. Engineering Structures. 2022. 253. DOI:10.1016/j.engstruct.2021.113790. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121917237&doi=10.1016%2Fj.engstruct.2021.113790&partnerID=40&md5=5063fe8b398a5c79d54c304b62ee4777.
  • Jiang, F., Yang, S., Qi, C., Liu, H.-T., Remennikov, A., Pei, L.-Z. Blast response and multi-objective optimization of graded re-entrant circular auxetic cored sandwich panels. Composite Structures. 2023. 305. DOI:10.1016/j.compstruct.2022.116494.
  • Skripnyak, V. V, Chirkov, M.O., Skripnyak, V.A. Modeling the Mechanical Response of Auxetic Metamaterials to Dynamic Effects. PNRPU Mechanics Bulletin. 2021. (2). Pp. 144–152. DOI:10.15593/perm.mech/2021.2.13. URL: https://ered.pstu.ru/index.php/mechanics/article/view/1786.
  • Wu, Q., Chen, Z., Xiong, J., Wang, Z., Yang, C. Computational Studies of Porous Head Protection Structures for Human Cranium under Impact Loading. Acta Mechanica Solida Sinica. 2021. 34(4). Pp. 477–493. DOI:10.1007/s10338-021-00222-2. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102583088&doi=10.1007%2Fs10338-021-00222-2&partnerID=40&md5=f693283a055f361fa3adea5cdc95864a.
  • Zhou, G., Yan, P., Dai, S., Wang, Q., Li, X., Hao, Y., Wang, Y. Design optimization for protective shell of hydrogen cylinder for vehicle based on NPR structure. Structural and Multidisciplinary Optimization. 2021. 64(1). Pp. 369–388. DOI:10.1007/s00158-021-02878-3. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103345609&doi=10.1007%2Fs00158-021-02878-3&partnerID=40&md5=dea841b147f2dd1fbbbb96c6a11fb1a3.
  • Lan, X.-K., Huang, Q., Zhou, T., Feng, S.-S. Optimal design of a novel cylindrical sandwich panel with double arrow auxetic core under air blast loading. Defence Technology. 2020. 16(3). Pp. 617–626. DOI:10.1016/j.dt.2019.09.010. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078334323&doi=10.1016%2Fj.dt.2019.09.010&partnerID=40&md5=6b5a5525183393a69b25d3abccf3d15c.
  • Bohara, R.P., Linforth, S., Ghazlan, A., Nguyen, T., Remennikov, A., Ngo, T. Performance of an auxetic honeycomb-core sandwich panel under close-in and far-field detonations of high explosive. Composite Structures. 2022. 280. DOI:10.1016/j.compstruct.2021.114907. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85118496784&doi=10.1016%2Fj.compstruct.2021.114907&partnerID=40&md5=7e76da90aa53c6de59834c689d4a5f98.
  • Thuy Anh, V.T., Quang, V.D., Duc, N.D., Thinh, P.N. Impact of blast and mechanical loads on the shear deformable stiffened sandwich plate with an auxetic core layer in thermal environment. Journal of Sandwich Structures and Materials. 2022. 24(1). Pp. 663–695. DOI:10.1177/10996362211021912. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107562693&doi=10.1177%2F10996362211021912&partnerID=40&md5=4d7b448d8bdb188a891c9b8e4922b313.
  • Arifurrahman, F., Critchley, R., Horsfall, I. Experimental and numerical study of auxetic sandwich panels on 160 grams of PE4 blast loading. Journal of Sandwich Structures and Materials. 2021. 23(8). Pp. 3902–3931. DOI:10.1177/1099636220961756. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091774355&doi=10.1177%2F1099636220961756&partnerID=40&md5=23165d0e461afcd3769756423be50d01.
  • Chen, G., Cheng, Y., Zhang, P., Liu, J., Chen, C., Cai, S. Design and modelling of auxetic double arrowhead honeycomb core sandwich panels for performance improvement under air blast loading. Journal of Sandwich Structures and Materials. 2021. 23(8). Pp. 3574–3605. DOI:10.1177/1099636220935563. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087073533&doi=10.1177%2F1099636220935563&partnerID=40&md5=fa06134ab889352c22b3a20772441ea6.
  • Tarlochan, F. Sandwich structures for energy absorption applications: A review. Materials. 2021. 14(16). DOI:10.3390/ma14164731. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113589172&doi=10.3390%2Fma14164731&partnerID=40&md5=a8dc22e294d980f755bfc71efe96399a.
  • Cong, P.H., Duc, N.D. Nonlinear dynamic analysis of porous eccentrically stiffened double curved shallow auxetic shells in thermal environments. Thin-Walled Structures. 2021. 163. DOI:10.1016/j.tws.2021.107748. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103975469&doi=10.1016%2Fj.tws.2021.107748&partnerID=40&md5=74c250e788a6c2b11fc3ea468858f5ee.
  • Van Quyen, N., Van Thanh, N., Quan, T.Q., Duc, N.D. Nonlinear forced vibration of sandwich cylindrical panel with negative Poisson’s ratio auxetic honeycombs core and CNTRC face sheets. Thin-Walled Structures. 2021. 162. DOI:10.1016/j.tws.2021.107571. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101339248&doi=10.1016%2Fj.tws.2021.107571&partnerID=40&md5=bc730ff861c12d6ebac433a3e77be9c0.
  • Harris, J.A., McShane, G.J. Impact response of metallic stacked origami cellular materials. International Journal of Impact Engineering. 2021. 147. DOI:10.1016/j.ijimpeng.2020.103730. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092235774&doi=10.1016%2Fj.ijimpeng.2020.103730&partnerID=40&md5=10beb217043909e52792562415da46bc.
  • Al-Rifaie, H., Sumelka, W. Improving the blast resistance of large steel gates-Numerical study. Materials. 2020. 13(9). DOI:10.3390/ma13092121. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085495660&doi=10.3390%2Fma13092121&partnerID=40&md5=aa50be85502f61d56857ab8ffa046007.
  • Lim, T.C. Auxetic Materials and Structures. Springer Singapore, 2015. 587 p. ISBN:9789812872746.
  • Koniok, D.A., Voitsekhovsky, K.V., Pleskachevsky, Y.M., Shilko, S.V. Materials with negative Poisson’s ratio. (The review). Journal “Mekhanika kompozitsionnykh materialov i konstruktsii.” 2004. 10(1). Pp. 35–69.
  • Prawoto, Y. Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio. Computational Materials Science. 2012. 58. Pp. 140–153. DOI:10.1016/j.commatsci.2012.02.012.
  • Carneiro, V.H., Meireles, J., Puga, H. Auxetic materials — A review. Materials Science-Poland. 2013. 31(4). Pp. 561–571. DOI:10.2478/s13536-013-0140-6.
  • Saxena, K.K., Das, R., Calius, E.P. Three Decades of Auxetics Research − Materials with Negative Poisson’s Ratio: A Review. Advanced Engineering Materials. 2016. 18(11). Pp. 1847–1870. DOI:https://doi.org/10.1002/adem.201600053.
  • Kolken, H.M.A., Zadpoor, A.A. Auxetic mechanical metamaterials. RSC Adv. 2017. 7(9). Pp. 5111–5129. DOI:10.1039/C6RA27333E.
  • Ren, X., Das, R., Tran, P., Ngo, T.D., Xie, Y.M. Auxetic metamaterials and structures: a review. Smart Materials and Structures. 2018. 27(2). Pp. 23001. DOI:10.1088/1361-665X/aaa61c.
  • Kazhaev, V.V., Semerikova, N.P. LONGITUDINAL WAVES IN THE ROD OF A MATERIAL WITH A NEGATIVE POISSON’S RATIO. Vestnik of Lobachevsky University of Nizhni Novgorod. 2011. 4(4). Pp. 1509–1510. URL: http://www.vestnik.unn.ru/en/nomera?anum_eng=7388 (date of application: 22.03.2023).
  • Callister, W.D.J. Materials Science and Engineering: An Introduction. 7th ed. Wiley Publishers, 2007. 832 p. ISBN:978-0006970118.
  • Volmir, A.S. The nonlinear dynamics of plates and shells. USA, Ohio, Foreign Technology Division Wright-Patterson Air Force, 1974. 543 p.
  • Rabotnov, Y.N. Elements of hereditary solid mechanics. Moscow, Mir Publishers, 1980. 387 p.
  • Verlan, A.F., Abdikarimov, R.A., Eshmatov, K. Numerical modeling of nonlinear problems of the dynamics of viscoelastic systems with variable rigidity. Electronic modeling. 2010. 32(2). Pp. 3–14.
  • Mirsaidov, M, Abdikarimov, R, Khudainazarov, Sh, Sabirjanov, T. Damping of high-rise structure vibrations with viscoelastic dynamic dampers. E3S Web Conf. 2020. 224. Pp. 2020. DOI:10.1051/e3sconf/202022402020.
  • Khodzhaev, D., Abdikarimov, R., Normuminov, B. Dynamic stability of viscoelastic rectangular plates with concentrated masses. IOP Conference Series: Materials Science and Engineering. 2020. 896(1). Pp. 012030. DOI:10.1088/1757-899X/896/1/012030.
  • Normuminov, B., Abdikarimov, R., Mirsaidov, M., Khodzhaev, D., Mirzaev, B. Parametric vibrations of viscoelastic orthotropic cylindrical panels of variable thickness. {IOP} Conference Series: Materials Science and Engineering. 2020. 869. Pp. 52034. DOI:10.1088/1757-899x/869/5/052034.
  • Abdikarimov, R., Usarov, D., Khamidov, S., Koraboshev, O., Nasirov, I., Nosirov, A. Free oscillations of three-layered plates. IOP Conference Series: Materials Science and Engineering. 2020. 883(1). Pp. 012058. DOI:10.1088/1757-899X/883/1/012058.
  • Badalov, F.B., Éshmatov, K., Yusupov, M. On certain methods of solving systems of integrodifferential equations encountered in viscoelasticity problems. Journal of Applied Mathematics and Mechanics. 1987. 51. Pp. 683–686.
Еще
Статья научная