Symmetric Key Encryption using Iterated Fractal Functions

Автор: Shafali Agarwal

Журнал: International Journal of Computer Network and Information Security(IJCNIS) @ijcnis

Статья в выпуске: 4 vol.9, 2017 года.

Бесплатный доступ

With the advancement in the network transmission media, need for secure data communication is strongly felt. Recently fractal based cryptosystem has become a topic of active research in computer network system because of its chaotic behavior. The proposed method utilizes the intrinsic relationship between Mandelbrot function and Julia function to develop a non-transitional key cryptosystem. The process starts with the formation of public key using superior Mandelbrot set with the help of few global as well as secret parameters on both sides. After exchanging public keys, both parties will generate their own private key using superior Julia set which will be same on both sides. The method is also implemented for Ishikawa iterated fractal function and subsequently carried out detailed analysis for both functions. The given cryptosystem utilizing two different iteration methods and improve the performance by increasing the encryption key up to 128 bits. As per experimental result and performance analysis, the key has large key space, high key sensitivity due to chaotic nature and efficient execution time which helps to achieve a secure communication network environment for data transmission.

Еще

Ishikawa Iteration, Julia set, Mandelbrot set, Mann Iteration, Symmetric key encryption

Короткий адрес: https://sciup.org/15011825

IDR: 15011825

Список литературы Symmetric Key Encryption using Iterated Fractal Functions

  • W. Stalling, Cryptography and Network Security (PHI, 2004).
  • W. Diffie, M. E. Hellman. New Directions in Cryptography, IEEE Transactions on Information Theory, 22(6): 1976, 644-654 doi-10.1109/TIT, 1055638.
  • M. Alia, A. Samsudin. New key exchange protocol based on Mandelbrot and Julia fractal set, International journal of computer science and network security, Vol. 7, No.2, 2007, pp 302-307.
  • A. M. Ahmad. and A. Samsudin. A new public key cryptosystem based on Mandelbrot and Julia fractal sets, Asian journal of Information technology, 6:567-575, 2007.
  • A. MS. Public key cryptography: Applications, Algorithms and Mathematical Explanation, India, Tata Elexi-2007
  • Neal Koblitz. A course in number theory and cryptography, 2nd edition, springer, pp 235,1994
  • C. Pickover. Computers, Pattern, Chaos, and Beauty, (St. Martin's Press, New York, 1990).
  • B. Howell, A. Reese and M. Basile, Fractal Cryptology, New Mexico High School, Supercomputing Challenge Final Report (2003).
  • G. B. Huntress. Encryption using Fractal Key, United States Patent 6782101, (2004).
  • I. Motyl, R. Jašek, P. Vařacha. Analysis of the Fractal Structures for the Information Encrypting Process, International Journal of Computers, Issue 4, Volume 6, pp 224-231, 2012.
  • Nadia M. G. AL-Saidi and Said M. R. M. A New Approach in Cryptographic Systems Using Fractal Image Coding, Journal of Mathematics and Statistics, 5 (3): ISSN 1549-3644, DOI: 10.3844/jmssp.2009.183.189, pp183-189, (2009).
  • Nadia M. G. AL-Saidi and Said M. R. M. A New Public Key Cryptosystem Based on IFS, International Journal of Cryptology Research, 2(1): pp 1-13, 2010.
  • Nadia M. G. AL-Saidi and Said M. R. M., et al., Efficiency Analysis for Public Key Systems Based on Fractal Functions, Journal of Computer Science, 7 (4): pp 526-532, ISSN 1549-3636, 2011.
  • J. Shaw, O. Saha, A Chaudhuri. An Approach for Secured Transmission of Data using Fractal based Chaos, IJCA Proceedings on National Conference on Communication Technologies & its impact on Next Generation Computing 2012, CTNGC (4): pp 13-17.
  • Feasibility Study on Random Number Generators for Symmetric Key Cryptography, Chapter 6, pp 156-204.
  • B. B. Mandelbrot. Fractal geometry of nature, San Francisco: W. H. Freeman (1982).
  • M. Barnsley. Fractals everywhere, 2nd edition, Academic press professional Inc., San Diego, CA. USA, ISBN: 10:0120790610 (1993).
  • W. R. Mann. Mean value methods in iterations, Proceedings of American Mathematical Society, vol. 4, 506-510, 1953.
  • M. Rani, V. Kumar. Superior Mandelbrot Set, Journal of the Korea Society of Mathematical Education Series, 8(4), pp 279-291, 2004.
  • M. Rani. and V. Kumar. Superior Julia set, Journal of the Korea Society of Mathematical Education Series, 8(4): pp 261–77, 2004.
  • S. Ishikawa, "Fixed points by a new iteration method", Proceedings of American Mathematical Society, vol. 44, No. 1, pp. 147-150, 1974.
  • R. Rana, Y. S. Chauhan and A. Negi. Non Linear Dynamics of Ishikawa Iteration, International Journal of Computer Applications 7(13), pp. 43–49, 2010.
  • S. Agarwal, G. Srivastava and A. Negi. Dynamics of Mandelbrot set with transcendental function, International Journal of Advanced Computer Science & Applications; 3(5): 142-146, 2012.
  • Negi D., Negi A., Agarwal S. "The Complex Key Cryptosystem", International Journal of Applied Engineering Research, ISSN 0973-4562 Volume 11, Number 1, pp 681-684, 2016.
  • A. G. Radwan, S. H. AbdElHaleem, S. K. Abd-El-Hafiz, Symmetric encryption algorithms using chaotic and non-chaotic generators: A review, Journal of Advanced Research Volume 7, Issue 2, http://dx.doi.org/10.1016/j.jare.2015.07.002, Pages 193–208, 2016.
  • A. M. Meligy, H. Diab, M. S. El-Danaf, Chaos Encryption Algorithm using Key Generation from Biometric Images, International Journal of Computer Applications (0975 – 8887) Volume 149 – No.11, 2016.
  • S. Somaraj and M. A. Hussain, Performance and Security Analysis for Image Encryption using Key Image, Indian Journal of Science and Technology, Vol 8(35), DOI: 10.17485/ijst/2015/v8i35/73141, 2015.
  • S. Sattari, A. Akkasi, R. A. Lari, et al., "Cryptography in social networks using wavelet transform, fractals and chaotic functions", International Research Journal of Applied and Basic Sciences, Science Explorer Publications, ISSN 2251-838X / Vol, 9 (9): 1627-1635, 2015.
  • Y. Sun, L. Chen, R. Xu, R. Kong, "An Image Encryption Algorithm Utilizing Julia Sets and Hilbert Curves". PLoS ONE, 9(1): e84655. doi:10.1371/journal.pone.0084655, 2014.
  • V. Rozouvan. "Modulo image encryption with fractal keys", Optics and Lasers in Engineering, 47(1), pp.1-6, 2009.
  • Y. Y. Sun, R.Q. Kong, X.Y. Wang, et al., "An Image Encryption Algorithm Utilizing Mandelbrot Set". International Workshop on Chaos-Fractal Theories and Applications. 2010, pp 170–173.
  • S. K. Abd-El-Hafiz1, A. G. Radwan, S. H. Abdel Haleem, M. L. Barakat, A fractal-based image encryption system, IET Image Processing, Vol. 8, Issue 12, pp. 742–752, 2014, doi:10.1049/iet-ipr.2013.0570.
  • S. H. AbdElHaleem, A. G. Radwan, S. K. Abd-El-Hafiz "Design of pseudo random keystream generator using fractals " IEEE Int. Conf. on Electronics Circuits and Systems (IECCS) 877-880 UAE 2013.
  • W. Wang, H. Tan, Y. Pang, Z. Li, P. Ran and J. Wu, A Novel Encryption Algorithm Based on DWT and Multichaos Mapping, Hindawi Publishing Corporation Journal of Sensors Volume 2016, Article ID 2646205, 7 pages http://dx.doi.org/10.1155/2016/2646205.
  • H. Khanzadi, M. Eshghi, S. E. Borujeni, Image Encryption Using Random Bit Sequence Based on Chaotic Maps, Arab J Sci Eng (2014) 39:1039–1047 DOI 10.1007/s13369-013-0713-z.
  • Y. Sun, R. Xu, L. Chen, X. Hu, Image Compression and Encryption Scheme Using Fractal Dictionary and Julia Set, IET Image Process., Vol. 9, Issue 3, 2015, pp. 173–183 doi:10.1049/iet-ipr.2014.0224.
  • H. Kashanian, M. Davoudi and H. Khorramfar, Image Encryption using chaos functions and fractal key, International Journal of Advanced Biotechnology and Research (IJBR) ISSN 0976-2612, Online ISSN 2278–599X, Vol-7, Special Issue-Number4, 2016, pp1075-1082.
  • A. Chopra, M. Ahmad, M. Malik, An Enhanced Modulo-based Image Encryption Using Chaotic and Fractal Keys, International Conference on Advances in Computer Engineering and Applications (ICACEA) IMS Engineering College, Ghaziabad, India, 2015, 978-1-4673-6911-4/15/$31.00©2015 IEEE.
  • D. Harinath, M. V. Ramana Murthy, B. Chitra, Cryptographic Methods and Performance Analysis of Data Encryption Algorithms in Network Security, International Journal of Advanced Research in Computer Science and Software Engineering 5(7), July- 2015, pp. 680-688.
  • B. Fredriksson, An introduction to the Mandelbrot set January 2015.
  • Quist-Aphetsi Kester, Image Encryption based on the RGB PIXEL Transposition and Shuffling, IJCNIS, vol.5, no.7, pp.43-50, 2013. DOI: 10.5815/ijcnis.2013.07.05.
  • Junming Ma, Ruisong Ye, An Image Encryption Scheme Based on Hybrid Orbit of Hyper-chaotic Systems, IJCNIS, vol.7, no.5, pp.25-33, 2015.DOI: 10.5815/ijcnis.2015.05.04.
  • M. Khan, T. Shah, A Literature Review on Image Encryption Techniques, 3D Research Center, Kwangwoon University and Springer-Verlag Berlin Heidelberg 2014, 5:29 DOI 10.1007/s13319-014-0029-0
Еще
Статья научная