Технологические особенности армирования металлических композиционных материалов интерметаллическими упрочняющими элементами

Автор: Крюков Д.Б., Кривенков А.О., Чугунов С.Н., Гуськов М.С., Савинкина А.Л.

Журнал: Теория и практика современной науки @modern-j

Рубрика: Основной раздел

Статья в выпуске: 4 (10), 2016 года.

Бесплатный доступ

В статье рассмотрен новый принцип изготовления изотропных по механическим свойствам металлических композиционных материалов на основе титана и алюминия сваркой взрывом на основе синтеза интерметаллического слоя заданного состава и толщины на границах прочного соединения матрицы и упрочняющего элемента за счёт теплового воздействия на конечной операции изготовления детали или конструкции.

Композиционный армированный материал, сварка взрывом, интерметаллид, термическая обработка, прочность

Короткий адрес: https://sciup.org/140268594

IDR: 140268594

Текст научной статьи Технологические особенности армирования металлических композиционных материалов интерметаллическими упрочняющими элементами

В настоящее время в широком спектре отраслей производств используются композиционные материалы с металлической матрицей, армированные металлическими и неметаллическими волокнами, основным недостатком которых является низкая технологичность при формировании изделий и анизотропность механических свойств.

Задачей исследований являлась разработка нового способа изготовления изотропных по механическим свойствам металлических композиционных материалов на основе титана и алюминия сваркой взрывом. Исследования выполнялись за счет средств гранта Российского научного фонда (соглашение № 14-19-00251 от 26 июня 2014 года). В основу разработки новых металлических композиционных материалов положен принцип синтеза интерметаллического слоя заданного состава и толщины на границах прочного соединения матрицы и упрочняющего элемента за счёт теплового воздействия на заключительной операции изготовления детали или конструкции [1, 2]. С учетом того, что геометрические параметры и конфигурация промежуточного упрочняющего слоя оказывает влияние на характер физико-механических свойств композиционного материала, был проведен анализ схем армирования, в ходе которого было установлено, что наиболее рациональным с точки зрения перераспределения внутренних напряжений в композиционном материале и создания условий для анизотропии свойств является использование перфорированных промежуточных армирующих слоев [3].

С целью оценки комплекса механических свойств металлических композиционных материалов системы Ti-Al было выполнено математическое моделирование данного материала в программе Solid Works . На основании результатов компьютерного моделирования металлических композиционных материалов, установлено, что предел прочности металлических композиционных материалов с интерметаллической перфорированной двухслойной прослойкой TiAl 3 , по сравнению с материалом матрицы, увеличивается на 46 % с обеспечением изотропности.

С целью проверки адекватности использованной математической модели были проведены экспериментальные работы по формированию металлических композиционных материалов сваркой взрывом, которая обеспечивает надежное неразъемное соединение между материалом матрицы (ВТ 1-0) и упрочняющими элементами (АМг5М), исключая возможность образования непроваров, краевых дефектов и разрушения упрочняющих элементов. После сварки взрывом композиты сохраняют свои технологические свойства, что позволяет проводить дальнейшие операции по формообразованию из них деталей и конструкций. При получении металлических композиционных материалов сваркой взрывом в качестве базовой схемы армирования использовалась схема с промежуточным упрочняющим слоем с коническими разнонаправленными перфорациями [4].

При исследовании микроструктуры зоны соединения металлических композиционных материалов, полученного сваркой взрывом по разработанной схеме армирования, интерметаллических включений, микротрещин, дефектов сплошности не выявлено.

Для оценки механических свойств металлических композиционных материалов из пластин, полученных на режимах сварки без образования интерметаллидов в зоне сварного шва, вырезали плоские образцы (в соответствии с ГОСТ 1497-84). Полученные значения свойств металлических композиционных материалов сравнивались с данными компьютерного моделирования. Наиболее высокие значения присущи композиционному материалу с коническими разнонаправленными перфорациями в промежуточном упрочняющем слое. Временное сопротивление на разрыв данных образцов составило 616 МПа.

Следующим этапом формирования свойств металлических композиционных материалов является синтез интерметаллического слоя заданной толщины на границе соединения матрицы и упрочняющего элемента за счёт теплового воздействия, режимы которого выбираются с учетом требования по фазовому составу и объемному содержанию упрочняющих элементов. Интенсивность процесса синтеза зависит от температуры теплового воздействия, толщина образующихся интерметаллических прослоек от времени выдержки, а их состав от направления процессов диффузии.

Испытания на одноосное растяжение МКМ после теплового воздействия и формирования в нем интерметаллических прослоек показали, что прочность МКМ растет с увеличением толщины интерметаллической прослойки, достигая максимального значения при толщине прослойки 100 мкм, что соответствует расчётным значениям, полученным при компьютерном моделировании.

Разработанный принцип синтеза интерметаллического слоя заданного состава и толщины на границах прочного соединения матрицы и упрочняющего элемента за счёт теплового воздействия на конечной операции изготовления детали или конструкции может быть успешно применён при создании МКМ другого состава.

Список литературы Технологические особенности армирования металлических композиционных материалов интерметаллическими упрочняющими элементами

  • Кривенков А.О., Чугунов С.Н., Крюков Д.Б., Баранов А.Н., Гуськов М.С. Tриботехнические свойства композиционных материалов на основе титана, полученных методами высокоэнергетического воздействия // Металлург. №7. 2015. С. 73-76.
  • Первухин Л.Б., Розен А.Е., Крюков Д.Б., Кривенков А.О., Чугунов С.Н. Металлические композиционные материалы, армированные интерметаллическими упрочняющими элементами // Металлург. №10. 2015. С. 74-77.
  • Математическая модель и прогнозирование свойств новых композиционных материалов /Крюков Д.Б., Кривенков А.О., Чугунов С.Н., Гуськов М.С., Розен А.А. / Сб. матер. Междунар. науч.- практ. конф. «Актуальные вопросы образования и науки». Тамбов, 30 сентября 2014 г. Часть 1. С. 67-68.
  • Способ получения композиционного материала: Патент на изобретение, Рос. Федерация №2522505 / Розен А.Е., Крюков Д.Б., Кирин Е.М., Гуськов М.С., Хорин А.В., Усатый С.Г., Любомирова Н.А.; патентообладатели: Общество с ограниченной ответственностью Инженерно-Технологический центр «Сварка»; дата поступл.: 26.04.2013; дата регистрации: 20.05.2014.
Статья научная