Технологические подходы к детоксикации и биовосстановлению нефтезагрязнённых земель
Автор: Заболотских Влада Валентиновна, Танких Светлана Николаевна, Васильев Андрей Витальевич
Журнал: Известия Самарского научного центра Российской академии наук @izvestiya-ssc
Рубрика: Общая биология
Статья в выпуске: 5-3 т.20, 2018 года.
Бесплатный доступ
Авторами статьи на основе теоретического анализа существующих технологий детоксикации и восстановления нефтезагрязнённых земель разработаны биосорбционные комплексы и технологические подходы их применения. В статье приводятся экспериментально обоснованные технологические решения применения биосорбционных смесей БСС для детоксикации и биовосстановления нефтезагрязнённых почв и предложены приёмы их внесения на этапе биологической рекультивации земель.
Детоксикация, биовосстановление, почвы, нефтезагрязнённые земли
Короткий адрес: https://sciup.org/148314070
IDR: 148314070
Текст научной статьи Технологические подходы к детоксикации и биовосстановлению нефтезагрязнённых земель
Ежегодно в регионе происходит более 60 крупных аварий и около 20 тысяч значительных разливов нефти. Аварии причиняют огромный ущерб окружающей среде и всему живому. С каждым годом увеличивается количество прорывов трубопроводов, образуются значительные скопления нефтяных отходов в результате деятельности предприятий нефтедобычи и переработки нефти. Согласно государственной статистической отчётности по форме 2 – ТП (отходы) от 3455 предприятий Самарской области за 2006 год было образовано 4147228,024 тонн отходов, из них масла и отработанные жидкие нефтепродукты составляют 773,737 тонн (2 класс опасности) [13].
Всё это приводит к нарастающему негативному воздействию нефтяных загрязнений на окружающую среду [11, 13, 15, 16] .
Как известно, нефть это многокомпонентная смесь, состоящая из различных углеводородов с различной степенью токсичности. Загрязнение нефтью и нефтепродуктами почв приводит к гибели биоценозов почв и деградации почвы [1, 19, 20, 26].
Анализ теоретических источников российских и зарубежных авторов показал, что перспективными для решения экологических проблем, связанных с загрязнением окружающей среды нефтяными углеводородами является биологические технологии трансформации нефтепродуктов микроорганизмами биодеструкторами. Среди которых наибольшее внимание привлекают технологии биовосстановления (биоремедиации) нефтезагрязнённых почв [14].
Само понятие ремедиации (от англ. remediation - излечивание, исправление, реа- билитация) – означает удаление загрязнений и восстановление мультифункциональности природных сред способами, безопасными для экосистем и человека [14]. Биорекультивация нефтезагрязненных почв - это многостадийный биотехнологический процесс, включающий физико-химические методы детоксикации загрязнителя, применение органических и минеральных добавок, использование биопрепаратов (Бельков В.В., 1995).
Для биоремедиации загрязнённых земель используют главным образом эволюционно сложившиеся функции микроорганизмов: их роль в биогеохимическом круговороте веществ в природе, в процессах самоочищения экосистем, деградации техногенных загрязнений, в образовании почвенного гумуса, минерализации ежегодно образующейся массы органических веществ, природных биополимеров и др. [1, 12]
В отличие от большинства физических или химических методов (например, сжигания, остекловывания, экстракции) биологические способы позволяют полностью минерализовать органические загрязнения, процессы протекают в более мягких условиях и отличаются универсальностью или селективностью [14]. Кроме того, биотехнологические методы восстановления почв становятся самыми распространенными в силу относительно малых затрат при их осуществлении [1, 2, 8, 11, 12, 16, 19, 24].
При биоремедиации, биовосстановлении используются природные механизмы, живые объекты и поэтому это наиболее экологически чистый способ, при котором биологический материал включается в трофические цепи питания, природный круговорот веществ без образования отходов [1, 2, 7, 8].
Биоразложение (детоксикация) загрязнений микроорганизмами деструкторами завершается их полной минерализацией или частичным разложением как в аэробных, так и в анаэробных условиях. Чтобы ускорить биоразложение прибегают к различным приёмам стимулирования микроорганизмов и созданию оптимальных условий для их жизнедеятельности.
В ряде работ отечественных и зарубежных авторов исследовались условия эффективной биоремедиации нефтезагрязнённых почв. По мнению исследователей, почва представляет собой систему, в которой всегда присутствуют несколько аборигенных (местных) биодеструкторов углеводородов (Schlegel, 1992, Zhao et al., 2017), которые активируются как только появляются надлежащие условия (кислород, растительность).
Так в работе (Gabriela Menta Alvimn, Patrícia Procópio Pontes, 2018) при оценке биоремедиации глинистых кислых почв, загрязненных дизельным топливом, было выявлено, что добав- ление 5% опилок было наиболее полезным для микробной активности микроорганизмов биодеструкторов загрязнений почвы. Наилучший результат в удалении из почвы дизельного топлива был получен в экспериментах при комбинации 5% опилок и аэрации (24,79 мгO2 кг -1су-хих почв в день -1) [22].
В ряде экспериментов была исследована возможность увеличения скорости биодеградации (Harmsen, 2001 , 2004 ). Все способы оптимизации процесса биоремедиации (биореактор, повышение температуры и принудительная аэрация, добавление активных грибов, использование бактерий деструкторов, использование сельскохозяйственных отходов и осадка сточных вод, дополнительная растительность и др.) положительно влияли на скорость деградации наиболее биодоступной фракции углеводородов [16-27].
В результате ряда исследований выяснилось, что нефтяные углеводороды НУ, в том числе и ПАУ (полиароматические углеводороды) являются биоразлагаемыми, но скорость их разложения существенно различается ( Sims and Overcash,1983). Выделено несколько типов микроорганизмов, способных биодеградировать НУ и ПАУ ( Juhasz and Naidu, 2000, Kuppusamy et al., 2017). Ghosal et al. (2016) выявили и описали большое количество нефтеразлагающих микроорганизмов в сочетании с надлежащими условиями, необходимыми для деградации нефтяных загрязнений, среди которых регулирование концентрации кислорода, рН, температуры, доступность питательных веществ и улучшение биодоступности. В ряде экспериментов обнаружено, что одновременное применение всех микроорганизмов и надлежащих условий может привести к усиленному биоразложению нефтяных углеводородов ( Zhao et al., 2017).
На протяжении последних десятилетий проводились многочисленные исследования, связанные с биотрансформацией, биодеградацией и биоремедиацией нефтяных углеводородов (УВ), и вопросами использования нефтедеградирующих организмов для очистки окружающей среды. Результатом научных трудов в этой области стали различные разработки по биоремедиации нефти, в том числе активные штам-мы-нефтедеструкторы и их консорциумы, на основе которых в России и за рубежом производятся коммерческие биопрепараты для ликвидации углеводородных загрязнений. Это и «Пу-тидойл», и «Деворойл», «Бамил», «Петро Трит», «Сойлекс», «Фаерзайн» и т.д. Помимо жизнеспособных клеток микробов они содержат различные добавки во всевозможных сочетаниях [9, 14, 17, 25, 27].
Научно-исследовательские центры, занимающиеся разработкой подобных биопрепаратов, в настоящее время работают по четырем направлениям [16]:
-
1) Выделение активных штаммов-биодеструкторов из аборигенной микрофлоры нефтеносных районов, сочетание нескольких штаммов в одной композиции для расширения условий применения, доказательство непато-генности подобных препаратов, - в этом направлении идет работа в России, некоторых странах ЕС (Чехии и Великобритании);
-
2) Создание препаратов на основе генетически модифицированных микроорганизмов, что позволяет расширить диапазон (США и Япония);
-
3) Использование вместо живых культур не-фтедеструкторов их активных ферментных систем, и/или обработка загрязнений биогенными веществами (пребиотиками, биосурфактантами), активизирующими аборигенную микрофлору;
-
4) Разработка методов комплексного биологического воздействия на нефтяные загрязнения, когда нефтесодержащий отход вначале подвергают обработке различными биологически активными веществами, упрощая и ускоряя вторую стадию, – воздействия биопрепарата, что значительно сокращает общие сроки утилизации отходов.
Получены результаты [18] эффективного применения для биоремедиации почв биопродуктов, полученных из отработанного активного ила БОС (ПДН – 1 (продукт деструкции нефтепродуктов) с использованием депонированного коллекционного термофильного штамма архе-бактерий - прокариотических микроорганизмов типа Bacillus sp. ВКПМ В – 5061. Исследования показали, что данный продукт способен очищать почву от пролитых нефтепродуктов (патент РФ № 2195435 от 27 декабря 2002 года). Применение рекультивации с использованием продукта ПДН -1 с добавлением семян многолетних трав позволило не только добиться деструкции (снижения концентрации) нефтепродуктов, но и восстановления травяного покрова в течение года [18].
Для технологического восстановления нефтезагрязнённых земель необходимо понимание общих закономерностей трансформации нефти в почве (Ю.И. Пиковский, 1993). Нефть, как многокомпонентная система, состоящая из различных углеводородов и других токсичных веществ деградирует в почве очень медленно, процессы окисления одних структур ингибируются другими структурами, трансформация отдельных соединений идет по пути приобретения форм, трудноокисляемых в дальнейшем. В аэрируемой среде на земной поверхности нефть окисляется гораздо быстрее.
Основной механизм окисления углеводородов (УВ) разных классов в аэробной среде следующий: внедрение кислорода в молекулу, замена связей с малой энергией разрыва (ОС, С-Н) связями с большой энергией, следовательно, процесс протекает самопроизвольно. Главный абиотический фактор трансформации -ультрафиолетовое излучение. Фотохимические процессы могут разлагать даже наиболее стойкие полициклические углеводороды за несколько часов [12, 19].
Конечными продуктами метаболизма нефти в почве являются: углекислота, которая может связываться в карбонаты, кислородные соединения (спирты, кислоты, альдегиды, кетоны), которые частично входят в почвенный гумус, частично растворяются в воде и удаляются из почвенного профиля. Твердые нерастворимые продукты метаболизма — результат дальнейшего уплотнения высокомолекулярных продуктов или связывания их в органо-минеральные комплексы [17, 19].
Выделяются несколько этапов преобразования нефти в природных системах. Первый этап - физико-химическое разрушение, дегазация, выветривание, вымывание и ультрафиолетовая деструкция [12]. Микробиологические процессы на начальном этапе подавлены. Но постепенно численность и активность микроорганизмов возрастают. В зависимости от почвенно-климатических условий и состава нефти этот период продолжается от нескольких месяцев до 1,5 лет. Второй этап - биодеструкция углеводородов нефти, где ведущую роль играют бактерии родов Pseudomonas, Bacillus , дрожжи Candida , микроскопические грибы Aspergillus и др. Происходит разрушение углеродных связей, возрастают концентрации наиболее устойчивых высокомолекулярных соединений. Длительность этапа 3-4 года, и он возрастает с увеличением количества пролитой нефти [19]. Третий этап соответствует деградации полиаренов. В этот период, несмотря на общее уменьшение концентрации токсикантов в единице объема загрязненного почвенного тела, экологическая опасность остаточных концентраций нефти остается высокой. Конечные продукты, возникающие при разрушении нефти — оксикериты и гуминокериты. Таким образом, естественная деградация нефтяных углеводородов в природных условиях включает последовательное разложение компонентов и происходит в достаточно длительный период времени, необходима активная рекультивация, создание условий для активизации естественных биодеструкторов, что сокращает скорость рекультивации и восстановления земель на порядки..
Состав работ первого уровня рекультивации направлен на активизацию почвенных микроорганизмов по деструкции углеводородов. Сюда входят рыхление почвы, внесение извести, гип- са, высоких доз органических и минеральных удобрений с последующей запашкой, создание мульчирующей поверхности из высокопитательных смесей, посев нефтетолерантных растений повышенными нормами, а также возможно применение составных мелиорантов: NPK+навоз; NPK+известь; NPK+известь+навоз [1, 2, 7, 8, 10, 11, 12, 16, 24].
Наибольшую эффективность в удалении из почвы нефти и нефтепродуктов проявили технологии с периодическим циклом: увлажнение – дренаж - аэрация. Скорость деструкции нефти можно увеличить при создании в почве нейтральной реакции, внесении воды, азота и фосфора (соотношение C:N:P должно быть 100:10:10), СаО [8,10].
Большое внимание уделяют использованию растений для очистки почв, загрязненных углеводородами (нефтью и нефтепродуктами), рассматривая три наиболее перспективных метода очистки загрязнений с помощью растений: фитодеградация, фитоиспарение, ризодегра-дация [7, 24].
Весьма перспективным является посев устойчивых к нефти растений, а также использование эффективных штаммов нефтеокисляющих бактерий, водорослей. Внесение зеленой массы сидератов (донника, клевера, рапса) в загрязненную нефтью почву активизирует процессы микробиологического разложения нефти, способствует восстановлению численности почвенных микроорганизмов, стимулирует деятельность почвенных оксидоредуктаз, принимающих участие в деструкции нефти. Сидераты обладают высокой эффективностью действия на биологическую активность почв, обогащая ее органическим веществом, азотистыми соединениями и другими элементами питания [8,10].
В рекультивационные работы второго уровня входят замена загрязненного слоя путем удаления последнего, создание рекультивационного слоя способом смешивания замазученных и чистых слоев почвы; внесение органоминеральных и бактериальных активаторов (керамзитовые окатыши, навоз, биодеструкторы); устройство под загрязненным слоем поглотительно-экра-нирующих слоев из минеральных грунтов и извести. Почвы с высоким уровнем загрязнения направляют на переработку с целью добычи извлекаемой части нефтепродуктов, после чего их рекультивируют в стационарных или полевых условиях. Отличие этого подхода в том, что биостимуляция образцов естественной микрофлоры загрязненной почвы проводится сначала в лабораторных или промышленных условиях (в биореакторах или ферментерах). При этом обеспечивается преимущественный и избирательный рост тех микроорганизмов, которые способны наиболее эффективно утилизировать данный загрязнитель. «Активизированную» микрофлору вносят в загрязненный объект одновременно с необходимыми добавками, повышающими эффективность утилизации загрязнителя (Логинов О.Н. и др., 2004).
Существующие два пути интенсификации биодеградации ксенобиотиков в окружающей среде - стимуляция естественной микрофлоры и интродукция активных штаммов, не только не противоречат, но и дополняют друг друга (Коро-нелли Т.В., 1996).
Наиболее эффективным и доступным методом быстрого сбора нефти при аварийных разливах является сорбция. Сорбенты образуют при контакте с нефтью агломераты. Сбор и удаление нефти и нефтепродуктов с поверхности почв с помощью сорбентов осуществляют несколькими способами: методом простого расстилания (типа «промокашки»), нанесением формованных или дисперсных сорбентов, а также с помощью специальных валков с нанесением на рабочую поверхность сорбирующего материала. Для производства сорбентов используется различное сырье. В России существуют собственные технологии производства сорбентов нефтепродуктов из местного сырья и отходов.
В мире производят как однокомпонентные сорбенты, так и многокомпонентные сорбенты, состоящие из природного сырья (торфа или его смеси с сапропелем) и модификаторов (солей двухвалентных металлов гуминовых кислот). Особую группу составляют биосорбенты [5, 6]. В последнее время широкое применение находят природные сорбенты. Использование в качестве компонентов биосорбционных смесей природных сорбентов и мелиорантов почвы (доломитовая мука, минеральные компоненты), а также материальных носителей биодеструкторов – соломы, сосновых опилок для локализация загрязнения и подготовки почвы к очистке. Достоинствами предлагаемых сорбентов является то, что они являются органической частью существующих экосистем и в наибольшей степени соответствуют экологическим требованиям. Природные сорбенты способствуют созданию благоприятных условий для достижения требуемого состояния почв экономически рациональными способами. Доломит улучшает физические, физико-химические и биологические свойства почвы. Увеличивает количество усвояемых форм азота, фосфора, калия, молибдена, повышает эффективность использования вносимых органических и минеральных удобрений, улучшает условия питания растений. Обогащает почву кальцием, который способствует росту растения, улучшает состояние корневой системы. Обогащает почву магнием, который входит в состав хлорофилла и участвует в фотосинтезе.
Их широкое распространение в природе, низкая стоимость и простая технология применения наряду с высокими сорбционными свойствами делают перспективным их использование для очистки земель от нефтепродуктов, Однако, ведущий фактор детоксикации загрязняющих веществ – биоразложение углеводородов. Применение сорбентов особенно эффективно с биологическими активаторами. Наиболее перспективны биосорбционные способы ликвидации углеводородных загрязнений, которые заключаются в создании и применении многокомпонентных композиций: микроорганизмы, иммобилизованные на сорбенте + многочисленные пребиотические добавки.
РАЗРАБОТКА НОВЫХ БИОСОРБЦИОННЫХ СМЕСЕЙ ДЛЯ ДЕТОКСИКАЦИИ
И БИОВОССТАНОВЛЕНИЯ ПОЧВ
В поиске новых эффективных решений биоремедиации нефтезагрязнённых почв нами были разработаны и экспериментально апробированы новые биосорбционные смеси (БСС) [4, 5, 6]. Экспериментальные исследования их эффективности показали, что наблюдается эффект эффективного очищения почвы и снижения её токсичности даже на почвах средней и высокой загрязнённости нефтью. Вероятно, это связано с комплексным влияние смеси на процесс биодеструкции нефти - наблюдалось повышение каталазной активности микробного сообщества и ОМЧ (общего микробного числа). Кроме того, входящие в состав смесей сорбенты с биопрепаратом поглощали нефть из почвы, что приводило к снижению токсической нагрузки на микроорганизмы деструкторы, а минеральные добавки стимулировали процессы биотрансформации нефтяных загрязнений и улучшали состав почвы [4, 5].
Экспериментальные исследования с использованием тест-объекта кресс-салата [3] позволили выявить изменения токсичности почвы в пробе с внесением комплекса «Биоактиватор» [6]. Сравнительные исследования показали, что в результате применения разработанного биокомплекса «Биоактиватор» деструкция нефтепродуктов проходила более эффективно. Исследуемый комплекс «Биоактиватор» оказался наиболее эффективным в уменьшении токсичности почвы и очистки её от нефтепродуктов. В пробах с внесённым комплексом «Биоактиватор» отмечалась наименьшая токсичность почвы по сравнению с другими пробами. Применение комплекса «Биоактиватор» позволит снизить токсичность почвы, ускорить процесс биодеградации нефтезагрязне-ний, активизировать процессы самоочищения почвы. Смесь состоит из недорогих и легкодоступных природных материалов, экологична и экономична [3, 4, 5] .
В результате разработаны технологические решения применения биосорбционных смесей для биологической рекультивации нефтезагрязнённых земель, обезвреживания отходов и обоснованы приёмы внесения разработанных БСС на этапе биологической рекультивации земель при ликвидации аварийных разливов нефти.
Главная идея разработки и применения БСС – создать почвенному микросообществу необходимые условия для восстановления и активного самоочищения почвы. Многокомпонентная биосорбционная смесь вносится в место загрязнения нефтью и нефтепродуктами и способствует стимуляции процесса биодеструкции нефти и быстрому и эффективному очищению почв от токсичных загрязняющих веществ.
Опыты по биовосстановлению почв, загрязнённых нефтепродуктами показали высокую эффективность использования доломитовой муки в качестве природного адсорбента и мелиоранта, сосновых опилок, как в качестве природного адсорбента, так и биостимулятора и биопрепарата «Байкал ЭМ 1» в деструкции лёгких продуктов переработки нефти. Биопрепарат вносили в виде водного раствора из расчёта 100 мл жидкого биопрепарата на 10 литров воды. В качестве фитомелиорантов использовали смеси трав вики и люцерны. Экспресс – анализ на фитотоксичность показал эффективность комплексного подхода к очистке почв от продуктов переработки нефти [3, 6].
Использование экологически безопасных сорбентов на основе природных материалов – доломитовой муки, вермикулита и др.
Доломитовую муку получают размолом доломита, который содержит 25-32% СаО и 1421% MgO, а в пересчете на СаСО3 - 79,7 - 110,8%. Кроме того, что доломит является хорошим абсорбентом, это также очень ценное известковое удобрение. Основное действующее вещество — карбонат кальция СаС03 практически нерастворим в воде, однако под влиянием содержащегося в почве СО2 он постепенно переходит в раствор в виде Са(НСО3)2. Гидролизуясь гидрокарбонат кальция образует Са(ОН)2, который нейтрализует кислотность почвенного раствора и вытесняет катионы водорода из ППК. Таким образом, доломит улучшает агрохимические характеристики почвы: снижается ее гидролитическая кислотность, возрастают степень насыщенности основаниями и содержание поглощенного кальция. Повышение рН почвенного раствора до значений, близких к нейтральному (6,0-6,5). Одновременно кальций, внесенный с известью, способствует коагуляции почвенных коллоидов, улучшает микроструктуру почвы, повышает ее водопрочность; в ней возрастает водопроницаемость и улучшается аэрация. Кальций способствует росту растения, улучшает состояние корневой системы. Почва обогащается магнием, который входит в состав хлорофилла и участвует в фотосинтезе. Доломит обладает абсолютной нетоксичностью по отношению к любым живым существам [4,5].
Смешение загрязнённой нефтью почвы с сосновыми опилками и сосновой корой или с соломой ускоряет на порядок скорость разрушения нефти за счёт способности микроорганизмов, существующих на поверхности коры, к разрушению сложных углеводородов, входящих в состав сосновой смолы, а также адсорбции нефтепродуктов корой и дополнительной аэрации
Фитомелиоранты (вика, люцерна и др.) в нефтезагрязнённой почве своей развитой корневой системой способствуют улучшению газовоздушного режима почвы, обогащают ее азотом и биологически активными соединениями. Этот метод разложения вредных веществ в почве называется фитодетоксикацией. Люцерна, используемая с данной целью, оказывает большое влияние на повышение плодородия почвы, обогащает её азотом, и способствует созданию прочной мелкокомковатой структуры, благоприятной для усиления деятельности микро-организмов-нефтедеструкторов. На корнях развиваются клубеньковые бактерии, усваивающие азот воздуха. При благоприятных условиях трехлетняя люцерна накапливает до 300 кг и более азота с 1 га. Посевы люцерны (Medicago sativa) способствуют переносу загрязнений в растения в результате следующих процессов: адсорбции корнями, перенос капиллярной водой из корней в наземные части. Органические загрязнения метаболизируются при участии внутриклеточных ферментов растений. Их полная минерализация происходит редко, продукты трансформации накапливаются в вакуолях клеток, в растительных тканях и в связанном виде являются относительно инертными и малотоксичными для растения. Люцерна очень чувствительна к кислой среде, где рост и развитие культуры угнетается. При рН=5 клубеньковые бактерии почти не развиваются, поэтому внесение доломита в почву нейтрализует кислые почвы и создаёт более благоприятные условия для процессов фиторемедиации и биодеградации нефтяных загрязнений. Кроме того, эффективность люцерны как фиторемедианта обеспечивается ризосферной биоремедиацией, при которой органические соединения нефтепродуктов разлагаются при совместном действии клубеньковых растений и микроорганизмов, обитающих в прикорневой зоне растений – ризосфере. Тогда скорость биодеградации и биодоступности ксенобиотиков-загрязнителей увеличивается в результате повышения численности и активности популяции микроорганизмов в ризосфере люцерны и улучшения синтеза ферментов, уча- ствующих в биодеградации загрязнений. Кроме того, при ризосферной биоремедиации происходит перенос кислорода в ризосферу через корни растений, повышение проницаемости почв, увеличение поверхности контакта грунтовых вод с почвой и почвенным воздухом, что способствует аэрации среды и также положительно сказывается на микробной деградации.
Действие ЭМ-препаратов («Байкал ЭМ 1», «Восток», ЭМ-1) основано на активизации деятельности полезной почвенной микрофлоры и накоплении питательных веществ в почве [3, 4]. Эти препараты включены в разработанные нами комплексные смеси БСС. «Байкал ЭМ 1» имеет следующий состав: молочнокислые, фотосинтезирующие, азотфиксирующие бактерии, сахаромицеты, культуральная жидкость. Японским микробиологом Тероу Хига разработана ЭМ-технология. Как считает автор, созданная технология способна даже самые бедные почвы направить в сторону регенерации в кратчайшие сроки. Это смогут сделать мельчайшие микроорганизмы, обозначенные как ЭМ, т.е. «эффективные микроорганизмы». Микроорганизмы включают аэробные и анаэробные разновидности. Главной причиной исключительной многофункциональности ЭМ-препарата является широчайший диапазон действия входящих в его состав микроорганизмов.
Каждая разновидность эффективных микроорганизмов имеет собственную важную функцию, но при этом, с одной стороны, поддерживает действие других микроорганизмов, с другой — использует вещества, произведенные этими микроорганизмами. Когда эффективные микроорганизмы развиваются в почвах как сообщество, количество полезных микроорганизмов увеличивается.
Главной причиной исключительной многофункциональности ЭМ-препарата является широчайший диапазон действия входящих в его состав микроорганизмов. После подготовительных мероприятий биопрепарат вносится на загрязненный участок из расчета 6-10л суспензии на 1м2 очищаемой поверхности. Биообработку следует проводить в утреннее или вечернее время или в пасмурную погоду. Биопрепарат запахивается в грунт. Активный процесс биодеструкции протекает за 3-10 недель, затем наблюдается медленное снижение содержания углеводородов нефти. На начальных стадиях скорость биодеструкции может быть повышена повторными внесениями препарата.
Внесение биопрепарата повышает содержание подвижных форм азота, фосфора и калия в период вегетации. Внесение «Байкал ЭМ 1» повышает биологическую активность грунтов на 83-94 %. Особенно возрастает число бактерий и актиномицетов [5, 6, 7].
Данный комплекс мероприятий на основе применения методов фито- и биоремедиации. является доступным и высокоэффективным. Комплексное использование методов биостимулирования и аугментации позволяет ускорить процесс деградации нефтепродуктов. Это позволяет снизить стоимость ремедиации и провести её в более короткие сроки.
Предлагается практическое использование выявленного эффективного биотехнологического комплекса очистки и рекультивации почвы, загрязнённой нефтепродуктами на основе сочетания различных биологических методов и их комплексного применения.
ПРЕДЛАГАЕМАЯ ТЕХНОЛОГИЯ ОЧИСТКИ И БИОВОССТАНОВЛЕНИЯ ПОЧВ
Среди методов очистки почвы от нефтепродуктов наиболее предпочтительны и эффективны биологические методы биодеградации, фиторемедиации и сорбции с использованием сорбентов природного происхождения, применение которых не приводит к нарушению природного равновесия.
Комплексное использование методов биостимулирования и аугментации позволяет ускорить процесс деградации нефтепродуктов, снизить стоимость ремедиации и провести её в более короткие сроки. Внесение оптимальной дозы доломита и сосновых опилок в почву, загрязнённую нефтепродуктами, создаёт благоприятные усло- вия для биодеградации ксенобиотиков аборигенной микрофлорой за счёт снижения концентрации загрязнителя и увеличения значения pH до 6,5 – 8,0. Применение доломита способствует улучшению агрохимических свойств почв и лучшему восстановлению почвенных биосистем. Кроме того, доломит оказывает положительное влияние на рост люцерны, используемой в качестве фитомелиоранта.
При очистке почв от нефтяных загрязнений предлагается использовать биотехнологический комплекс очистки и рекультивации почвы, на основе сочетания различных биологических методов и их комплексного применения.
Таким образом, в результате проведения опытных экспериментов была рекомендована к применению в Самарском регионе технология комплексного применения БСС на этапе биологической рекультивации земель (рисунок 1).
На этапе биологической рекультивации предлагается практическое использование разработанных и экспериментально апробированных БСС для биовосстановления и рекультивации почвы, загрязнённой нефтью и (или) нефтепродуктами (таблица 1).
Предложены технологические комплексы биовосстановления нефтезагрязнённых земель в зависимости от физико-химических свойств нефти и нефтепродуктов, особенностей почв региона, почвенно-климатических условий, стоимости и доступности мероприятий по рекультивации.
Технический этап рекультивации
Локализация загрязненного участка для предотвращения распространения нефтяного пятна
Сбор с поверхности земли (почвы, грунтов) излишков жидкой нефти и нефтепродуктов или их тяжелых фракций, что бывает сразу после аварии (разлива)
Агротехнический этап рекультивации
Рыхление почвенного горизонта для ускорения физико-химических и биохимических процессов деградации нефти с использованием мульчирующих грунтов (на сильнозагрязненных лесных почвах);
Создание искусственного микрорельефа из чередующихся продольных микроповышений (бугров) и микропонижений (канавок) на почвах с избыточным увлажнением;
Внесение минеральной подкормки - доломита и др..
Список литературы Технологические подходы к детоксикации и биовосстановлению нефтезагрязнённых земель
- Андерсон Р.К. Биотехнологические методы ликвидации загрязнений почв нефтью и нефтепродуктами / Р. К. Андерсон. М.: ВНИИОЭНГ, 1994. 24 с.
- Восстановление нефтезагрязнённых почвенных систем [под ред. М. И. Глазовской]. М.: Наука, 1988. 254 с.
- Васильев А.В., Заболотских В.В., Танких С.Н. Экспресс-диагностика токсичности почв, загрязнённых нефтепродуктами // Известия Самарского научного центра Российской академии наук, 2012. Т. 14. № 1(3). С.734-738
- Заболотских В. В., Васильев А.В., Тутукова К.В. Разработка комплексных смесей для восстановления нефтезагрязнённых земель // Нефтегазовый комплекс: проблемы и инновации: тезисы научно-практической конференции с международным участием [отв. редактор В.К.Тян]. Самара: Самар. гос. техн. ун-т, 2016. С. 87.
- Заболотских В.В., Васильев А.В. Тутукова К.В. Разработка сорбционного комплекса для очистки почв от нефтяных загрязнений // Известия Самарского научного центра Российской академии наук. 2017. Т. 19. № 5(2). С. 221 - 227