Tensile strength prediction method through compressive concrete cube test

Автор: Hematibahar M., Kharun M., Vatin N.I.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 2 (111), 2024 года.

Бесплатный доступ

The tensile strength of concrete is a crucial factor in civil engineering design of buildings and structures. Engineers are trying to find a new way to calculate tensile strength by using different characteristics in terms of the mechanical properties of concrete. This work aims to find the tensile strength through the apparent failure of cubic compression samples. In this way, the fracture angle, the diameter of the cubic sample, and the compressive strength were the factors most important in the tensile strength.

Tensile strength, compressive strength, concrete, high-performance concrete, basalt fiber, logistic algorithm

Короткий адрес: https://sciup.org/143182732

IDR: 143182732   |   DOI: 10.4123/CUBS.111.2

Список литературы Tensile strength prediction method through compressive concrete cube test

  • Resan, S.F., Chassib, S.M., Zemam, S.K. and Madhi, M.J. (2020) New Approach of Concrete Tensile Strength Test. Case Studies in Construction Materials, 12, e00347. https://doi.org/10.1016/j.cscm.2020.e00347.
  • Zhou, X., Xie, Y., Long, G., Zeng, X., Li, J., Yao, L., Jiang, W. and Pan, Z. (2021) DEM Analysis of the Effect of Interface Transition Zone on Dynamic Splitting Tensile Behavior of High-Strength Concrete Based on Multi-Phase Model. 106577. https://doi.org/10.1016/j.cemconres.2021.106577.
  • Bin Ahmed, F., Abid Ahsan, K., Shariff, T. and Rahman Meem, S. (2021) Formulation of Polynomial Equation Predicting the Splitting Tensile Strength of Concrete. Materials Today: Proceedings, 35, 3269–3278. https://doi.org/10.1016/j.matpr.2020.10.017.
  • Zhong, W., Pan, J., Wang, J. and Zhang, C. (2021) Size Effect in Dynamic Splitting Tensile Strength of Concrete: Experimental Investigation. 270, 121449. https://doi.org/10.1016/j.conbuildmat.2020.121449.
  • Jin, L., Yu, W., Du, X. and Yang, W. (2021) Meso-Scale Simulations of Size Effect on Concrete Dynamic Splitting Tensile Strength: Influence of Aggregate Content and Maximum Aggregate Size. 230, 106979. https://doi.org/10.1016/j.engfracmech.2020.106979.
  • Zhao, Y., Xu, B. and Hou, J. (2020) Influence of Maximum Aggregate Weight Ratio on Tensile Strength and Fracture Toughness of Concrete. Mechanics of Materials, 148, 103406. https://doi.org/10.1016/j.mechmat.2020.103406.
  • Oyebisi, S., Igba, T., Raheem, A. and Olutoge, F. (2020) Predicting the Splitting Tensile Strength of Concrete Incorporating Anacardium Occidentale Nut Shell Ash Using Reactivity Index Concepts and Mix Design Proportions. Case Studies in Construction Materials, 13, e00393. https://doi.org/10.1016/j.cscm.2020.e00393.
  • Hematibahar, M., Esparham, A., Vatin, N.I., Kharun, M. and Gebre, T.H. (2023) Effect of Gelatin Powder, Almond Shell, and Recycled Aggregates on Chemical and Mechanical Properties of Conventional Concrete. STRUCTURAL MECHANICS OF ENGINEERING CONSTRUCTIONS AND BUILDINGS. https://doi.org/doi:http://dx.doi.org/10.22363/1815-5235-2023-19-2-233-250.
  • Hematibahar, M., Hasanzadeh, A., Ivanovich Vatin, N., Kharun, M. and Shooshpasha, I. (2023) Influence of 3D-Printed Reinforcement on the Mechanical and Fracture Characteristics of Ultra High Performance Concrete. Results in Engineering, 101365. https://doi.org/doi:https://doi.org/10.1016/j.rineng.2023.101365.
  • Hematibahar, M., Vatin, N.I., Hamid, T.J. and Gebre, T.H. (2023) Effect of Using 3D-Printed Shell Structure for Reinforcement of Ultra-High-Performance Concrete. 19, 534–547. http://dx.doi.org/10.22363/1815-5235-2023-19-5-534-547.
  • Kharun, M., A. Alaraza, H., Hematibahar, M., Al Daini, R. and Manoshin, A. (2022) A. Experimental Study on the Effect of Chopped Basalt Fiber on the Mechanical Properties of High-Performance Concrete. AIP Conference Proceedings, 2559, 050017. https://doi.org/doi:http://dx.doi.org/10.1063/5.0099042.
  • Liu, Y. (2022) High-Performance Concrete Strength Prediction Based on Machine Learning. Computational Intelligence and Neuroscience, 1–7. http://dx.doi.org/10.1155/2022/5802217.
  • Zheng, D., Wu, R., Sufian, M., Ben Kahla, N., Atig, M., Farouk Deifalla, A., Accouche, O. and Azab, M. (2022) Flexural Strength Prediction of Steel Fiber-Reinforced Concrete Using Artificial Intelligence. Materials, 15, 5194. http://dx.doi.org/10.3390/ma15155194.
  • Chen, P., Wang, H., Cao, S. and Lv, X. (2022) Prediction of Mechanical Behaviours of FRP-Confined Circular Concrete Columns Using Artificial Neural Network and Support Vector Regression: Modelling and Performance Evaluation. Materials, 15, 4971. http://dx.doi.org/10.3390/ma15144971.
  • Kodsy, A. and Morcous, G. (2022) Shear Strength of Ultra-High-Performance Concrete (UHPC) Beams without Transverse Reinforcement: Prediction Models and Test Data. Materials, 15, 4794. http://dx.doi.org/10.3390/ma15144794.
  • J.A.D, N. and V.G, H. (2023) Flexural and Direct Tensile Strength Ratio for Concrete Unusual Cross-Sections. Rev. IBRACON Estrut. Mater, 16104. https://doi.org/doi:https://doi.org/10.1590/S1983-41952023000100004.
  • W-C, L., P-S, C., C-W, H. and S, W. (2022) An Innovative Test Method for Tensile Strength of Concrete by Applying the Strut-and-Tie Methodology. Materials. https://doi.org/doi:doi:10.3390/ma13122776.
  • Hematibahar, M., Ivanovich Vatin, N., A. Alaraza, H., Khalilavi, H. and Kharun, M. (2022) The Prediction of Compressive Strength and Compressive Stress-Strain of Basalt Fiber Reinforced High-Performance Concrete Using Classical Programming and Logistic Map Algorithm. Materials, 6975. https://doi.org/doi:http://dx.doi.org/10.3390/ma15196975.
  • Alaraza, H., Kharun, M. and Chiadighikaobi, P. (2022) The Effect of Minibars Basalt Fiber Fraction on Mechanical Properties of High-Performance Concrete. Cogent Engineering, 213660. https://doi.org/doi:https://www.tandfonline.com/action/showCitFormats?doi=10.1080/23311916.2022.2136603.
  • (2013) GOST 10180. Concretes. Methods for strength determination using reference specimens https://docs.cntd.ru/document/1200100908
  • (2016) ASTM C293 / C293M - 16 Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading). ASTM International. https://www.astm.org/c0293_c0293m-16.html
  • (2009) ASTM C1202-19 Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride. ASTM International. https://www.astm.org/c1202-19.html
Еще
Статья научная