Теории пластичности при сложном нагружении по пространственным траекториям деформаций
Автор: Бондарь В.С., Абашев Д.Р., Фомин Д.Ю.
Статья в выпуске: 4, 2021 года.
Бесплатный доступ
Рассматриваются варианты теории пластического течения при комбинированном упрочнении, широко применяемые в практических расчетах конструкций. Проводится сравнительный анализ вариантов теории при сложном нагружении по пространственным траекториям деформаций постоянной и переменной кривизны и кручения. Рассматриваются траектории большой кривизны и от среднего до большого кручения. Анализ результатов исследований проводится в векторном пространстве А.А. Ильюшина. Рассматриваются пространственные траектории деформаций в виде винтовых линий постоянной и переменной кривизны. Результаты расчетов сопоставляются с результатами экспериментальных исследований по ответным компонентам вектора напряжений и скалярным свойствам вдоль траектории деформаций. Рассматриваются варианты теории: модель Ишлинского - Прагера - Кадашевича - Новожилова (линейное кинематическое упрочнение и изотропное упрочнение); модель Шабоша с тремя эволюционными уравнениями Армстронга - Фредерика - Кадашевича; модель Темиса, построенная на основе инвариантной теории пластичности; модель Бондаря с трехчленной структурой эволюционного уравнения для кинематического упрочнения. Приводятся материальные параметры (функции), замыкающие варианты теории пластичности. Удовлетворительное соответствие эксперименту по всем траекториям деформаций достигается при расчете на основе модели Шабоша - отличие результатов расчетов и экспериментов не превышает 30 %. Наилучшее соответствие эксперименту достигается на основе модели Бондаря - отличие результатов расчетов и экспериментов по всем траекториям не превышает 10 %. Модель Бондаря замыкается тремя материальными параметрами и одной материальной функцией, которые определяются из простых экспериментов на одноосное растяжение и растяжение после предварительного сжатия (излом траектории деформаций на 180°). Модель пластичности Бондаря имеет обобщение на неизотермическое нагружение, особенности циклического непропорционального и пропорционального нагружений и описывает процессы накопления повреждений (ресурс).
Варианты теории пластического течения, комбинированное упрочнение, сложное нагружение, пространственные траектории деформаций, компоненты вектора напряжений, скалярные свойства
Короткий адрес: https://sciup.org/146282381
IDR: 146282381 | DOI: 10.15593/perm.mech/2021.4.05
Список литературы Теории пластичности при сложном нагружении по пространственным траекториям деформаций
- Ильюшин А.А. Механика сплошной среды. - М.: Изд-во МГУ, 1990. - 310 с.
- Васин Р.А. Определяющие соотношении теории пластичности // Итоги науки и техники. МДТТ. - М.: ВНИТИ, 1990. - Т. 21. - С. 3-75.
- Малый В.И. О проблеме векторных свойств материалов в упругопластических процессах // Прикладная механика. - 1978. - Т. 14, № 3. - С. 19-27.
- Зубчанинов В.Г. Устойчивость и пластичность: в 2 т. - Т. 2: Пластичность. - М.: ФИЗМАТЛИТ, 2008. - 336 с.
- Дао Зуй Бик. Модификация соотношений упругопластических процессов средней кривизны // Вестн. МГУ. Матем. и механика. - 1981. - № 5. - С. 103-106.
- Пелешко В.А. Прикладной и инженерный варианты теории упругопластических процессов активного сложного нагружения. Ч. 2: Идентификация и верификация // Изв. РАН. МТТ. - 2016. - № 1. - С. 110-135.
- Бондарь В.С., Даншин В.В., Семенов П.В. Прикладной вариант теории упругопластических процессов // Изв. Тульского гос. университета. Естественные науки. - 2011. - Вып. 3. - С. 46-56.
- Ишлинский А.Ю. Общая теория пластичности с линейным упрочнением // Укр. матем. журн. - 1954. - Т. 6, вып. 3. - С. 314-324.
- Prager W. The theory of plasticity: A Survey of Recent Achievements // Proc. Inst. Mech. Engrs. - London, 1955. - Vol. 169. - Р. 41.
- Кадашевич Ю.И., Новожилов В.В. Теория пластичности, учитывающая эффект Баушингера // Докл. АН СССР. - 1957. - Т. 117, вып. 4. - С. 586-588.
- Кадашевич Ю.И. О различных тензорно-линейных соотношениях в теории пластичности // Исследования по упругости и пластичности. - Л.: Изд-во ЛГУ, 1967. - Вып. 6. - С. 39-45.
- Кадашевич Ю.И., Новожилов В.В. Микронапряжения в конструкционных материалах. - Л. Машиностроение, 1990. - 224 с.
- Armstrong P.J., Frederick C.O. A mathematical representation of the multiaxial Bauscinger effect // CEGB Report No. RD/B/N/ 731. - 1966.
- Волков И.А., Коротких Ю.Г. Уравнения состояния вязкоупругопластических сред с повреждениями. - М.: ФИЗМАТЛИТ, 2008. - 424 с.
- Нелинейная механика материалов / Ж. Бессон [и др.]. - СПб.: Изд-во Политехн. ун-та, 2010. - 397 с.
- Chaboche J.-L. A review of some plasticity and viscoplasticity constitutive theories // Int. J. of Plasticity. - 2008. - Vol. 24. - P. 1642-1692.
- Bondar V.S. Inelasticity. Variants of the theory. - New York: Begell House, 2013. - 194 p.
- Constitutive modeling of cyclic plasticity deformation and low-high-cycle fatigue of stainless steel 304 in uniaxial stress state / V.S. Bondar, V.V. Dansin, D.Vu. Long, D.D. Nguyen // Mechanics of Advanced Materials and Structures. - 2018. - Vol. 25 (12) - P. 1009-1017, doi: 10.1080/15376494.2017.1342882
- Бондарь В.С., Абашев Д.Р., Петров В.К. Некоторые особенности прогнозирования ресурса материалов и конструкций при циклическом нагружении // Вестник Пермского национального исследовательского политехнического университета. Механика. - 2019. - № 1. - С. 18-26. doi: 10.15593/perm.mech/2019.1.02
- Abashev D.R., Bondar V.S. Refinement of plasticity theory for modeling monotonic and cyclic loading processes // Journal of Mechanics of Materials and Structures. - 2020. - Vol. 15. - Р. 225.
- Демьянушко И.В., Темис Ю.М. К построению теорий пластического течения с анизотропным упрочнением для материалов, находящихся под воздействием физических полей // Изв.АН СССР. МТТ. - 1975. - № 5. - С. 111-119.
- Ohno N., Wang J.-D. Kinematic hardening rules with critical state of dynamic recovery, part 1: formulations and basic features for ratcheting behavior // International Journal of Plasticity. - 1993. - Vol. 9. - P. 375-390.
- Темис Ю.М., Худякова А.Д. Модель неизотермического упругопластического деформирования конструкционных материалов при сложном нагружении // Математическое моделирование и численные методы. - 2017. - № 3. - С. 22-41.
- Abdel-Karim M. Modified kinematic hardening rules for simulations of ratchetting // Int. J. of Plasticity. - 2009. - Vol. 25. - P. 1560-1587.
- Hassan T., Taleb L., Krishna S. Influence of non-proportional loading on ratcheting responses and simulations by two recent cyclic plasticity models // Int. J. Plasticity. - 2008. - Vol. 24. - P. 1863-1889.
- Зубчанинов В.Г., Охлопков Н.Л., Гаранников В.В. Экспериментальная пластичность. Процессы сложного деформирования. - Тверь: ТГТУ, 2003. - Кн. 1. - 172 с.
- Экспериментальное исследование упругопластического деформирования стали при сложном нагружении по криволинейным пространственным траекториям деформаций / А.С. Вавакин, Р.А. Васин, В.В. Викторов [и др.]. - М., 1986. - 67 с. Деп. в ВИНИТИ, № 7298-В86.
- Упругопластическое поведение стали 45 на винтовых траекториях деформаций / А.С. Вавакин, Р.А. Васин, В.В. Викторов [и др.] // Пластичность и разрушение твердых тел. - М., 1988. - С. 21-29.