Testing of the model of the heat exchanger supercharger with a flat active part
Автор: Zhang Qianwen, Liu Chunyan, Peng Yan, Levtsev Aleksei
Журнал: Бюллетень науки и практики @bulletennauki
Рубрика: Технические науки
Статья в выпуске: 1 т.7, 2021 года.
Бесплатный доступ
This paper designs a pulsation-generating structure to provide pulsating flow for experiments. The relationship between frequency, flow and pulsating flow enhancement heat transfer is discussed separately. The characteristics of pulsating flow enhanced heat transfer are analyzed, and the theoretical research and engineering application of pulsating heat transfer are proposed. The scheme of the laboratory installation is developed, which is an independent circuit from the heat source with a pulse circulation of the coolant. The unit allows testing the heat exchanger-supercharger at different performance at the frequency of fluctuations of the coolant from 0.5 to 2 Hz. As a result of thermal tests, graphs of temperature changes over time in the heated and closed circuit at flow interruption frequencies from 0.5 to 1 Hz are obtained. It is found that with increasing frequency of flow fluctuations, the heating time of the coolant in a closed loop decreases by almost 1.85 times.
Pulsating generator, pulsating flow, frequency, heat transfer
Короткий адрес: https://sciup.org/14117929
IDR: 14117929 | DOI: 10.33619/2414-2948/62/23
Список литературы Testing of the model of the heat exchanger supercharger with a flat active part
- Nishimura T., Ohori Y., Kawamura Y. Flow characteristics in a channel with symmetric wavy wall for steady flow // Journal of chemical engineering of Japan. 1984. V. 17. №5. P. 466-471. DOI: 10.1252/jcej.17.466
- Nishimura T., Kojima N. Mass transfer enhancement in a symmetric sinusoidal wavy-walled channel for pulsatile flow // International Journal of Heat and Mass Transfer. 1995. V. 38. №9. P. 1719-1731. DOI: 10.1016/0017-9310(94)00275-Z
- Nishimura T., Oka N., Yoshinaka Y., Kunitsugu K. Influence of imposed oscillatory frequency on mass transfer enhancement of grooved channels for pulsatile flow // International journal of heat and mass transfer. 2000. V. 43. №13. P. 2365-2374. DOI: 10.1016/S0017-9310(99)00311-7
- Nishimura T., Matsune S. Vortices and wall shear stresses in asymmetric and symmetric channels with sinusoidal wavy walls for pulsatile flow at low Reynolds numbers // International Journal of Heat and Fluid Flow. 1998. V. 19. №6. P. 583-593. DOI: 10.1016/S0142-727X(98)10005-X
- Nishimura T., Bian Y. N., Kunitsugu K. Mass-transfer enhancement in a wavy-walled tube by imposed fluid oscillation // AIChE journal. 2004. V. 50. №4. P. 762-770. DOI: 10.1002/aic.10070
- Habib M. A., Attya A. M., Eid A. I., Aly A. Z. Convective heat transfer characteristics of laminar pulsating pipe air flow // Heat and mass transfer. 2002. V. 38. №3. P. 221-232.
- DOI: 10.1007/s002310100206
- Li H., Zhong Y., Zhang X., Deng K., Lin H., Cai, L. Experimental Study of Convective Heat Transfer in Pulsating Air Flow inside Circular Pipe // Challenges of Power Engineering and Environment. 2007. P. 880-885.
- DOI: 10.1007/978-3-540-76694-0_164
- Zhong Y., Deng K., Zhao S., Hu J., Zhong Y., Li Q., … Wen Q. Experimental and Numerical Study on Hydraulic Performance of Chevron Brazed Plate Heat Exchanger at Low Reynolds Number // Processes. 2020. V. 8. №9. P. 1076.
- DOI: 10.3390/pr8091076
- Yang B. C., Jin D. X. An Experimental Investigation of Heat Transfer Enhancement by Pulsating Laminar Flow in a Triangular Grooved Channel // Advanced Materials Research. 2012. V. 516-517. P. 249-252.
- DOI: 10.4028/www.scientific.net/amr.516-517.249
- Wu S., Zeng D. Analysis of Effect of Fouling on Thermodynamic Performance of Convective Heat Transfer Process Through a Duct // Advanced Energy Systems. 2002.
- DOI: 10.1115/imece2002-33146
- Ishino Yo., Suzuki M., Abe T., Ohiwa N., Yamaguchi Sh. Flow and Heat Transfer characteristics in pulsating pipe flows (effects of pulsation on internal Heat Transfer in a circular pipe flow) // Heat Transfer. 1996. V. 25. №5. 323-341.