The algorithm for estimating reserves of the working process stability in combustion chambers and gas generators of liquid rocket engines
Автор: Biryukov V.I., Nazarov V.P., Tsarapkin R.A.
Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau
Рубрика: Авиационная и ракетно-космическая техника
Статья в выпуске: 3 т.18, 2017 года.
Бесплатный доступ
The experimental evaluation of the working process stability with respect to acoustic oscillations in combustion chambers and gas generators of liquid rocket engines is one of the main methods used in rocket engine construction. External and internal disturbing devices using explosive hexogen often lead to the damage to the fire walls and struc- tural elements of the aggregates The disadvantages of traditional external impulse devices also include a considerable wide range of the pressure pulses values generated by them in the combustion chamber with the same value of the sam- ple of the explosive and with the constant parameters of the atmosphere in the combustion chamber, which is due to the scatter of the explosives characteristics. An alternative approach is proposed for creating a pulse effect on the working process in the combustion chamber by exploding an electrical conductor. The disturbing device is made with an explo- sive chamber connected by a channel with the reaction volume of the combustion chamber. In the electro-impulse dis- turbing device a thin wire fastened to isolated electrodes is used instead of the charge of the explosive. As a substance used to create a pressure pulse, this generator uses gas filling the blasting chamber, the mass of which depends on the pressure in the combustion chamber and in the chamber of the electro-impulse perturbative device. If one immediately heats this gas to a temperature of several thousand degrees, one can get a gas that is close in parameters to the com- bustion products of explosives in traditional external impulse devices. Such heating can be carried out by discharging through a wire of an electric capacitor charged to several thousand volts. First, instantaneous (for several microsec- onds) evaporation of the wire, and then through the plasma channel formed at the site of the wire, the final discharge of the capacitor takes place, with virtually all of the energy stored in the capacitor discharged. The plasma temperature in this case, according to different sources, can reach from several tens of thousands to one million degrees. The gas is also heated by adiabatic compression with a shock wave. The metal particles formed after the evaporation of the wire and the condensation of the vapor have a value of several nanometers and, therefore, do not damage the inner layer of the combustion chamber. The methodological bases are considered and the algorithm for estimating the stocks of stability to acoustic vibrations from the reaction of the combustion process to such pulsed artificial disturbances is developed. There have been developed electro-impulse disturbing devices that reduce the risk of damage to the compo- nents of liquid rocket engine assemblies in full-scale and model test, and have an obvious prospect for widespread use.
Liquid rocket engine, acoustic oscillations, disturbing device, electric explosion of conductors, damping decrement, intercorrelation function
Короткий адрес: https://sciup.org/148177734
IDR: 148177734
Список литературы The algorithm for estimating reserves of the working process stability in combustion chambers and gas generators of liquid rocket engines
- Двигатели ракетные жидкостные. Методика оценки высокочастотной устойчивости рабочего процесса: ОСТ В92-9000-78/НИИxиммаш, 1978. 105 с.
- Liquid propellant rocket combustion instability/Ed. David T. Harrje, associate Ed. Frederick H. Reardon; National aeronautics and space administration. Washington, 1972. 637p.
- Шибанов А. А., Пикалов В. П., Сайдов С. С. Методы физического моделирования высокочастотной неустойчивости рабочего процесса в жидкостных ракетных двигателях/под ред. д-ра техн. наук К. П. Денисова. М.: Машиностроение. Машино-строение -Полет, 2013. 512 с.
- Пат. № 2523921 Российская Федерация от 31.05.2013 г. Генератор импульсов давления в акустических полостях камер сгорания и генераторов жидкостных ракетных двигателей/Нарижный А. А., Пикалов В. П., Царапкин Р. А. Опубл. 27.07.2014, Бюл. № 21.
- Рабочие процессы в жидкостном ракетном двигателе и их моделирование/Е. В. Лебединский ; под ред. А. С. Коротеева. М.: Машиностроение, 2008. 512 с.
- Акустические средства борьбы с неустойчивостью горения/Е. В. Лебединский . М.: Изд-во ФГУП «Центр Келдыша», 2004. 205 с.
- Мосолов С. В., Бирюков В. И. Антипульсационные перегородки как средство подавления акустических колебаний в камерах жидкостных ракетных двигателей//Вестник машиностроения. 2011. № 11. С. 6-11.
- Мосолов С. В., Бирюков В. И. Гидродинамические способы обеспечения устойчивости рабочего процесса в камерах сгорания жидкостных ракетных двигателей//Вестник машиностроения. 2011. № 12. С. 12-17.
- Бирюков В. И., Белая А. Ю. Обеспечение устойчивости рабочего процесса в камере сгорания жидкостных ракетных двигателей//Вестник Московского авиационного института. 2011. Т. 18, № 3. С. 110-115.
- Бирюков В. И., Мосолов С. В. Динамика газовых трактов жидкостных ракетных двигателей. М.: Изд-во МАИ, 2016. 168 с.
- Mosolov S. V., Biryukov V. I. Maintenance of Operational Stability in Liquid-Propellant Rocket Engines by Adjusting the Acoustic Properties of the Combustion Chambers//Russian Engineering Research. 2013. Т. 33, № 6. С. 313-318.
- Dranovsky M. Combustion Instabilities in Liquid Rocket Engines: Testing and Development Practices in Russia, Progress in Astronautics and Aeronautics, AIAA. Reston, Virginia, 2007. 221 p.
- Liquid Rocket Engine Combustion Stabilization Devices/Nasa Space Vehicle Design Criteria (Chemical Propulsion). USA, 1974. SP 8113. 127 p.
- Yang V., Anderson W. Liquid Rocket Engine Combustion Instability, Progress in Astronautics and Aeronautics, AIAA. Washington, D. C., 1995. P. 169.
- Скучик Е. Основы акустики. М.: Мир, 1976. Т. 2. 542 с.
- Барабанов С. А., Бирюков В. И. Затухание вынужденных колебаний и гидроударных волн в турбулентном потоке протяженных трактов систем питания жидкостных ракетных двигателей//Вестник СибГАУ. 2015. Т. 16, № 2. С. 386-394.