The Brazilian soil spectral library data opening

Автор: Novais J.J.M., Rosin N.A., Rosas J.T.F., Poppiel R.R., Dotto A.C., Paiva A.F.S., Bellinaso H., Albarracn H.S.R., Amorim M.T.A., Bartsch B.D.A., Vogel L.G., Memello D.C., Francelino M.R., Alves M.R., Falcioni R., Dematt J.A.M.

Журнал: Бюллетень Почвенного института им. В.В. Докучаева @byulleten-esoil

Рубрика: Статьи

Статья в выпуске: 119, 2024 года.

Бесплатный доступ

Among the various repositories of soil spectral data, the Brazilian Soil Spectral Library (BSSL, https://bibliotecaespectral.wixsite.com/english), created and maintained by the GeoCiS research group, is representative of the pedodiversity of the region, since it combines soil spectra from agricultural and environmental research. The BSSL database contains 16,084 observations with soil-harmonized surface layer physicochemical and spectral data in the visible, near-infrared, short-wave infrared (Vis-NIR-SWIR, 350-2,500 nm) and mid-infrared (MIR, 4,000-600 cm-¹) ranges from all 26 Brazilian states and the Federal District. The idea of creating the BSSL was born in 1995, completed in 2019 and opened to users in 2023. This database is currently available online at https://zenodo.org/records/8361419. During oppening process, data filtering was performed to ensure reliable and valuable information provided to society. Then consistency and quality assessments were executed using Pearson's correlation and the Cubist algorithm in the R environment. Modeling analysis revealed the robust predictive power of the spectral database, facilitating the modeling of key soil attributes. An open-access BSSL will help researchers validate their results by comparing measured data with predicted data, enabling the development of new models or the improvement of existing ones. The BSSL is a globally significant spectral library due to its broad coverage and representation of different tropical soil classes. Soil spectral data can help governments and corporations by providing information to decision-makers regarding the conservation or exploitation of natural resources to monitor soil health.

Еще

Soil spectroscopy, soil database, pedometry, hybrid laboratory, soil attributes analysis

Короткий адрес: https://sciup.org/143183304

IDR: 143183304   |   DOI: 10.19047/0136-1694-2024-119-261-305

Список литературы The Brazilian soil spectral library data opening

  • Ackerson J.P., Demattê J.A.M., Morgan C.L.S., Predicting clay content on field-moist intact tropical soils using a dried, ground VisNIR library with external parameter orthogonalization, Geoderma, 2015, pp. 259-260, https://doi.org/10.1016/j.geoderma.2015.06.002.
  • Araújo S.R., Demattê J.A.M., Vicente S., Soil contaminated with chromium by tannery sludge and identified by vis-NIR-mid spectroscopy techniques, Int. J. Remote Sens., 2014, p. 35, https://doi.org/10.1080/01431161.2014.907940.
  • Bellinaso H., Demattê J.A.M., Romeiro S.A., Soil spectral library and its use in soil classification, Rev. Bras. Ciência do Solo, 2010, Vol. 34, pp. 861-870, https://doi.org/10.1590/S0100-06832010000300027.
  • Bowers S.A., Hanks R.J., Reflection of radiant energy from soils, Soil Sci., 1965, p. 100, https://doi.org/10.1097/00010694-196508000-00009.
  • Buol S.W., Solos e agricultura no centro oeste e norte do Brasil, Sci. Agric., 2009, Vol. 66, No. 5, pp. 697-707, https://doi.org/10.1590/S0103-90162009000500016.
  • Campos R.C., Demattê J.A.M., Cor do solo: uma abordagem da forma convencional de obtenção em oposição à automatização do método para fins de classificação de solos, Rev. Bras. Ciência do Solo, 2004, Vol. 28, pp. 853-863, https://doi.org/: 10.1590/s0100-06832004000500008.
  • Carnieletto Dotto A., Demattê J.A.M., Viscarra Rossel R.A., Rizzo R., Soil environment grouping system based on spectral, climate, and terrain data: A quantitative branch of soil series, SOIL 6, 2020, Vol. 6, pp. 163-177, https://doi.org/10.5194/soil-6-163-2020.
  • Chabrillat S., Ben-Dor E., Cierniewski J., Gomez C., Schmid T., van Wesemael B., Imaging Spectroscopy for Soil Mapping and Monitoring, Surv. Geophys., 2019, Vol. 40, pp. 361-399, https://doi.org/10.1007/s10712-019-09524-0.
  • Demattê J.A.M., Reflectância espectral de solos. Tese (Livre Docência) - Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, 1999, 452 p.
  • Demattê J.A.M., Relações entre dados espectrais e características físicas, químicas e mineralógicas de solos desenvolvidos de rochas eruptivas. Tese (Doutorado) - Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, 1995, 265 p.
  • Demattê J.A.M., Bellinaso H., Araújo S.R., Rizzo R., Souza A.B., Spectral regionalization of tropical soils in the estimation of soil attributes, Rev. Cienc. Agron., 2016, Vol. 47, n. 4, pp. 589-598, https://doi.org/10.5935/1806-6690.20160071.
  • Demattê J.A.M., Bellinaso H., Romero D.J., Fongaro C.T., Morphological Interpretation of Reflectance Spectrum (MIRS) using libraries looking towards soil classification, Sci. Agric., 2014, Vol. 71, pp. 509-520, https://doi.org/10.1590/0103-9016-2013-0365.
  • Demattê J.A.M., Campos R.C., Alves M.C., Fiorio P.R., Nanni M.R., Visible-NIR reflectance: A new approach on soil evaluation, Geoderma, 2004, Vol. 121, pp. 95-112, https://doi.org/10.1016/j.geoderma.2003.09.012.
  • Demattê J.A.M., da Silva Terra F., Spectral pedology: A new perspective on the evaluation of soils along pedogenetic alterations, Geoderma, 2014, Vol. 217, pp. 190-200, https://doi.org/10.1016/j.geoderma.2013.11.012.
  • Demattê J.A.M., Dotto A.C., Paiva A.F.S., Sato M.V., Dalmolin R.S.D., de Araújo M. do S.B., da Silva E.B., Nanni M.R., ten Caten A., Noronha N.C., Lacerda M.P.C., de Araújo Filho J.C., Rizzo R., Bellinaso H., Francelino M.R., Schaefer C.E.G.R., Vicente L.E., dos Santos U.J., de Sá Barretto Sampaio E.V., Menezes R.S.C., de Souza J.J.L.L., Abrahão W.A.P., Coelho R.M., Grego C.R., Lani J.L., Fernandes A.R., Gonçalves D.A.M., Silva S.H.G., de Menezes M.D., Curi N., Couto E.G., dos Anjos L.H.C., Ceddia M.B., Pinheiro É.F.M., Grunwald S., Vasques G.M., Marques Júnior J., da Silva A.J., Barreto M.C. d. V., Nóbrega G.N., da Silva M.Z., de Souza S.F., Valladares G.S., Viana J.H.M., da Silva Terra F., Horák-Terra I., Fiorio P.R., da Silva R.C., Frade Júnior E.F., Lima R.H.C., Alba J.M.F., de Souza Junior V.S., Brefin M.D.L.M.S., Ruivo M.D.L.P., Ferreira T.O., Brait M.A., Caetano N.R., Bringhenti I., de Sousa Mendes W., Safanelli J.L., Guimarães C.C.B., Poppiel R.R., e Souza A.B., Quesada C.A., do Couto H.T.Z., The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges, Geoderma, 2019, Vol. 354, pp. 113793, https://doi.org/10.1016/j.geoderma.2019.05.043.
  • Demattê J.A.M., Fongaro C.T., Rizzo R., Safanelli J.L., Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images, Remote Sens. Environ., 2018, Vol. 212, pp. 161-175, https://doi.org/10.1016/j.rse.2018.04.047.
  • Demattê J.A.M., Garcia G.J., Alteration of Soil Properties through a Weathering Sequence as Evaluated by Spectral Reflectance, Soil Sci. Soc. Am. J., 1999, Vol. 63, pp. 327-342, https://doi.org/10.2136/sssaj1999.03615995006300020010x.
  • Demattê J.A.M., Horák-Terra I., Beirigo R.M., Terra F. da S., Marques K.P.P., Fongaro C.T., Silva A.C., Vidal-Torrado P., Genesis and properties of wetland soils by VIS-NIR-SWIR as a technique for environmental monitoring, J. Environ. Manage., 2017, Vol. 197, pp. 50-62, https://doi.org/10.1016/j.jenvman.2017.03.014.
  • Demattê J.A.M., Mafra A.L., Bernardes F.F., Comportamento espectral de materiais de solos e de estruturas biogênicas associadas, Rev. Bras. Ciência do Solo, 1998, Vol. 22, pp. 621-630, https://doi.org/10.1590/s0100-06831998000400007.
  • Dematte J.A.M., Nanni M.R., da Silva A.P., de Melo Filho J.F., Dos Santos W.C., Campos R.C., Soil density evaluated by spectral reflectance as an evidence of compaction effects, Int. J. Remote Sens., 2010, Vol. 31, pp. 403-422, https://doi.org/10.1080/01431160902893469.
  • Demattê J.A.M., Nanni M.R., Formaggio A.R., Epiphanio J.C.N., Spectral reflectance for the mineralogical evaluation of Brazilian low clay activity soils, Int. J. Remote Sens., 2007, Vol. 28, pp. 4537-4559, https://doi.org/10.1080/01431160701250408.
  • Demattê J.A.M., Novais J.J., Rosin N.A., Rosas J.T.F., Poppiel R.R., Dotto A.C., Paiva A.F.S., The Brazilian Soil Spectral Library (VIS-NIR-SWIR-MIR) Database: Open Access. Zenodo 2, 2023, https://doi.org/10.5281/zenodo.8092773.
  • Demattê José A.M., Paiva A.F. da S., Poppiel R.R., Rosin N.A., Ruiz L.F.C., Mello F.A. de O., Minasny B., Grunwald S., Ge Y., Ben Dor E., Gholizadeh A., Gomez C., Chabrillat S., Francos N., Ayoubi S., Fiantis D., Biney J.K.M., Wang C., Belal A., Naimi S., Hafshejani N.A., Bellinaso H., Moura-Bueno J.M., Silvero N.E.Q., The Brazilian Soil Spectral Service (BraSpecS): A User-Friendly System for Global Soil Spectra Communication, Remote Sens., 2022, Vol. 14, n. 740, pp. 1-27, https://doi.org/10.3390/rs14030740.
  • Demattê José A.M., Paiva A.F. da S., Poppiel R.R., Rosin N.A., Ruiz L.F.C., Mello F.A. de O., Minasny B., Grunwald S., Ge Y., Dor E. Ben, Gholizadeh A., Gomez C., Chabrillat S., Francos N., Ayoubi S., Fiantis D., Biney J.K.M., Wang C., Belal A., Naimi S., Hafshejani N.A., Bellinaso H., Moura-Bueno J.M., Silvero N.E.Q., Correction to: Demattê et al. The Brazilian Soil Spectral Service (BraSpecS): A User-Friendly System for Global Soil Spectra Communication, Remote Sens., 2022, Vol. 14, 740, pp. 1459, https://doi.org/10.3390/rs14061459.
  • Demattê J.A.M., Safanelli J.L., Poppiel R.R., Rizzo R., Silvero N.E.Q., Mendes W. de S., Bonfatti B.R., Dotto A.C., Salazar D.F.U., Mello F.A. de O., Paiva A.F. da S., Souza A.B., Santos N.V. dos, Maria Nascimento C., Mello D.C. de, Bellinaso H., Gonzaga Neto L., Amorim M.T.A., Resende M.E.B. de, Vieira J. da S., Queiroz L.G. de, Gallo B.C., Sayão V.M., Lisboa C.J. da S., Bare Earth’s Surface Spectra as a Proxy for Soil Resource Monitoring, Sci. Rep., 2020, Vol. 10, n. 4461, pp. 1-11, https://doi.org/10.1038/s41598-020-61408-1.
  • Epiphanio J.C.N., Formaggio A.R., Valeriano M.M., Comportamento espectral de solos do Estado de São Paulo, Inpe, 1992. 143 p.
  • Formaggio A., Epiphanio J., Valeriano M., Oliveira J., Comportamento espectral (450-2.450 nm) de solos Tropicals de Sao Paulo, Rev. Bras. Cienc. Do Solo, 1996, Vol. 20, pp. 467-474,
  • Gallo B.C., Demattê J.A.M., Rizzo R., Safanelli J.L., Mendes W. de S., Lepsch I.F., Sato M. V., Romero D.J., Lacerda M.P.C., Multi-temporal satellite images on topsoil attribute quantification and the relationship with soil classes and geology, Remote Sens., 2018, Vol. 10, No. 1571, https://doi.org/10.3390/rs10101571.
  • Greschuk L.T., Demattê J.A.M., Silvero N.E.Q., Rosin N.A., A soil productivity system reveals most Brazilian agricultural lands are below their maximum potential, Sci. Rep., 2023, Vol. 13, 14103, https://doi.org/10.1038/s41598-023-39981-y.
  • Harris R., Baumann I., Open data policies and satellite Earth observation, Space Policy 32, 2015, https://doi.org/10.1016/j.spacepol.2015.01.001.
  • Instituto Brasileiro de Geografia e Estatística, IBGE, Brasil em Síntese, Inst. Bras. Geogr. e Estatística, 2017. https://brasilemsintese.ibge.gov.br
  • Novais J., Lacerda M.P.C., Sentinel-2 imagery usage on environmental monitoring of land use and occupation in a microwatershed in Central Brazil, Gaia Sci., 2021, Vol. 15, pp. 76-92, https://doi.org/10.22478/ufpb.1981-1268.2021v15n1.54515.
  • Kuhn M., Johnson K., Applied predictive modeling, Applied Predictive Modeling, 2013, pp 329-367, https://doi.org/10.1007/978-1-4614-6849-3.
  • Kuhn M., Quinlan R., Cubist: rule- and instance-based regression modeling, 2018, 14 p.
  • Lehmann J., Bossio D.A., Kögel-Knabner I., Rillig M.C., The concept and future prospects of soil health, Nat. Rev. Earth Environ., 2020, Vol. 1, pp. 544-553, https://doi.org/10.1038/s43017-020-0080-8.
  • Mello F.A.O., Demattê J.A.M., Bellinaso H., Poppiel R.R., Rizzo R., de Mello D.C., Rosin N.A., Rosas J.T.F., Silvero N.E.Q., Rodríguez-Albarracín H.S., Remote sensing imagery detects hydromorphic soils hidden under agriculture system, Sci. Rep., 2023, Vol. 13, No. 10897, https://doi.org/10.1038/s41598-023-36219-9.
  • Mendes W. de S., Demattê J.A.M., de Resende M.E.B., Chimelo Ruiz L.F., César de Mello D., Fim Rosas J.T., Quiñonez Silvero N.E., Ferracciú Alleoni L.R., Colzato M., Rosin N.A., Campos L.R., A remote sensing framework to map potential toxic elements in agricultural soils in the humid tropics, Environ. Pollut., 2022a, Vol. 292, No. 118397, https://doi.org/10.1016/j.envpol.2021.118397.
  • Mendes W. de S., Demattê J.A.M., Rosin N.A., Terra F. da S., Poppiel R.R., Urbina-Salazar D.F., Boechat C.L., Silva E.B., Curi N., Silva S.H.G., José dos Santos U., Souza Valladares G., The Brazilian soil Mid-infrared Spectral Library: The Power of the Fundamental Range, Geoderma, 2022b, Vol. 415, No. 115776, https://doi.org/10.1016/j.geoderma.2022.115776.
  • Nanni M.R., Povh F.P., Demattê J.A.M., Oliveira R.B. de, Chicati M.L., Cezar E., Optimum size in grid soil sampling for variable rate application in site-specific management, Sci. Agric., 2011, Vol. 68, No. 3, pp. 386-392, https://doi.org/10.1590/s0103-90162011000300017.
  • Nocita M., Stevens A., Toth G., Panagos P., van Wesemael B., Montanarella L., Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach, Soil Biol. Biochem., 2014, Vol. 68, pp. 337-347, https://doi.org/10.1016/j.soilbio.2013.10.022.
  • Novais J.J., Lacerda M.P.C., Sano E.E., Demattê J.A.M., Oliveira M.P., Digital Soil Mapping by Multispectral Modeling Using Cloud-Computed Landsat Time Series, Remote Sens., 2021, Vol. 13, pp. 1-18, https://doi.org/10.3390/rs13061181.
  • Novais J.J., Poppiel R.R., Lacerda M.P.C., Demattê J.A.M., VNIR-SWIR Spectroscopy, XRD and Traditional Analyses for Pedomorphogeological Assessment in a Tropical Toposequence, AgriEngineering, 2023, Vol. 5, pp. 1581-1598, https://doi.org/10.3390/agriengineering5030098.
  • Obukhov A.I., Orlov D.S., Spectral reflectivity of the major soils group and possibility of using diffuse reflection in soil investigation, Sov. Soil Sci., 1964, Vol. 1, pp. 174-184.
  • Paiva A.F. da S., Poppiel R.R., Rosin N.A., Greschuk L.T., Rosas J.T.F., Demattê J.A.M., The Brazilian Program of soil analysis via spectroscopy (ProBASE): Combining spectroscopy and wet laboratories to understand new technologies, Geoderma, 2022, Vol. 421, https://doi.org/10.1016/j.geoderma.2022.115905.
  • Poppiel R.R., Lacerda M.P.C., Safanelli J.L., Rizzo R., Oliveira M.P., Novais J.J., Demattê J.A.M., Mapping at 30 m resolution of soil attributes at multiple depths in midwest Brazil, Remote Sens., 2019, Vol. 11, https://doi.org/10.3390/rs11242905.
  • Poppiel R.R., Lacerda M.P.C., Safanelli J.L., Rizzo R., Oliveira M.P., Novais J.J., Demattê J.A.M., Mapping at 30 m resolution of soil attributes at multiple depths in midwest Brazil, Remote Sens., 2019, Vol. 11, No. 24, https://doi.org/10.3390/rs11242905.
  • Poppiel R.R., Paiva A.F. da S., Demattê J.A.M., Bridging the gap between soil spectroscopy and traditional laboratory: Insights for routine implementation, Geoderma, 2022, Vol. 425, https://doi.org/10.1016/j.geoderma.2022.116029.
  • Quinlan J.R., C4.5 Programs for Machine Learning, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1992. pp. 301.
  • R Core Team, R: A language and environment for statistical computing, R Found. Stat. Comput., 2019.
  • Ramos F.T., Dores E.F. de C., Weber O.L. do. S., Beber D.C., Campelo J.H., Maia J.C. d. S., Soil organic matter doubles the cation exchange capacity of tropical soil under no-till farming in Brazil, J. Sci. Food Agric., 2018, Vol. 98, pp. 3595-3602, https://doi.org/10.1002/jsfa.8881.
  • Rizzo R., Demattê J.A.M., Lepsch I.F., Gallo B.C., Fongaro C.T., Digital soil mapping at local scale using a multi-depth Vis-NIR spectral library and terrain attributes, Geoderma, 2016, Vol. 27, pp. 18-27, https://doi.org/10.1016/j.geoderma.2016.03.019.
  • Romero D.J., Ben-Dor E., Demattê J.A.M., Souza A.B. e., Vicente L.E., Tavares T.R., Martello M., Strabeli T.F., da Silva Barros P.P., Fiorio P.R., Gallo B.C., Sato M.V., Eitelwein M.T., Internal soil standard method for the Brazilian soil spectral library: Performance and proximate analysis, Geoderma, 2018, Vol. 312, pp. 95-103, https://doi.org/10.1016/j.geoderma.2017.09.014.
  • Rosin N.A., Demattê J.A.M., Poppiel R.R., Silvero N.E.Q., Rodriguez-Albarracin H.S., Rosas J.T.F., Greschuk L.T., Bellinaso H., Minasny B., Gomez C., Marques Júnior J., Fernandes K., Mapping Brazilian soil mineralogy using proximal and remote sensing data, Geoderma, 2023, 432, https://doi.org/10.1016/j.geoderma.2023.116413.
  • Safanelli J.L., Chabrillat S., Ben-Dor E., Demattê J.A.M., Multispectral models from bare soil composites for mapping topsoil properties over Europe, Remote Sens., 2020, Vol. 12, https://doi.org/10.3390/RS12091369.
  • Santos U.J. dos, Demattê J.A. de M., Menezes R.S.C., Dotto A.C., Guimarães C.C.B., Alves B.J.R., Primo D.C., Sampaio E.V. de S.B., Predicting carbon and nitrogen by visible near-infrared (Vis-NIR) and mid-infrared (MIR) spectroscopy in soils of Northeast Brazil, Geoderma, 2020, Vol. 23, https://doi.org/10.1016/j.geodrs.2020.e00333.
  • Sato M.V., Primeira aproximação da biblioteca espectral de solos do Brasil: caracterização de espectros de solos e quantificação de atributos: Dissertação de Mestrado, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 2015, pp. 103, https://doi.org/10.11606/D.11.2015.tde-15102015-152045.
  • Schaefer C.E.G.R., Fabris J.D., Ker J.C., Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review, Clay Miner, 2008, Vol. 43, pp. 137-154, https://doi.org/10.1180/claymin.2008.043.1.11.
  • Schoeneberger P.J., Wysocki D.A., Benham E.C., Soil Survey Staff, Field Book for Describing and Sampling Soils, Version 3.0, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE. Natl. Soil Surv. Ctr., Lincoln, NE, 2012.
  • Souza A.B., Demattê J.A.M., Mello F.A.O., Salazar D.F.U., Mendes W.S., Safanelli J.L., Ratio of Clay Spectroscopic Indices and its approach on soil morphometry, Geoderma, 2020, Vol. 357, https://doi.org/10.1016/j.geoderma.2019.113963.
  • Stenberg B., Viscarra Rossel R.A., Mouazen A.M., Wetterlind J., Visible and Near Infrared Spectroscopy in Soil Science, Advances in Agronomy, 2010, Vol. 107, pp. 163-215, https://doi.org/10.1016/S0065-2113(10)07005-7.
  • Stoner E.R., Baumgardner M.F., Characteristic Variations in Reflectance of Surface Soils, Soil Sci. Soc. Am. J., 1981, Vol. 45, pp. 1161-1165, https://doi.org/10.2136/sssaj1981.03615995004500060031x.
  • Teixeira P.C., Donagemma G.K., Fontana A., Teixeira W.G., Manual de métodos de análise de solo, Embrapa, 2017.
  • Terra F.S., Demattê J.A.M., Viscarra Rossel R.A., Spectral libraries for quantitative analyses of tropical Brazilian soils: Comparing vis-NIR and mid-IR reflectance data, Geoderma, 2015, Vol. 255-256, pp. 81-93, https://doi.org/10.1016/j.geoderma.2015.04.017.
  • Tiessen H., Cuevas E., Chacon P., The role of soil organic matter in sustaining soil fertility, Nature, 1994, Vol. 371, pp. 783-785, https://doi.org/10.1038/371783a0.
  • Tziolas N., Tsakiridis N., Ogen Y., Kalopesa E., Ben-Dor E., Theocharis J., Zalidis G., An integrated methodology using open soil spectral libraries and Earth Observation data for soil organic carbon estimations in support of soil-related SDGs, Remote Sens. Environ., 2020, Vol. 244, https://doi.org/10.1016/j.rse.2020.111793.
  • Viscarra Rossel R.A., Behrens T., Ben-Dor E., Brown D.J., Demattê J.A.M., Shepherd K.D., Shi Z., Stenberg B., Stevens A., Adamchuk V., Aïchi H., Barthès B.G., Bartholomeus H.M., Bayer A.D., Bernoux M., Böttcher K., Brodský L., Du C.W., Chappell A., Fouad Y., Genot V., Gomez C., Grunwald S., Gubler A., Guerrero C., Hedley C.B., Knadel M., Morrás H.J.M., Nocita M., Ramirez-Lopez L., Roudier P., Campos E.M.R., Sanborn P., Sellitto V.M., Sudduth K.A., Rawlins B.G., Walter C., Winowiecki L.A., Hong S.Y., Ji W., A global spectral library to characterize the world’s soil, Earth-Science Rev., 2016, Vol. 155, pp. 198-230, https://doi.org/10.1016/j.earscirev.2016.01.012.
  • Viscarra Rossel R.A., Webster R., Bui E.N., Baldock J.A., Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change, Glob. Chang. Biol., 2014, Vol. 20, pp. 2953-2970, https://doi.org/10.1111/gcb.12569.
Еще
Статья научная