The choice of method of computer simulation for formation of pictures of danger of electromagnetic environment
Автор: Mazur D.R., Titov Ye.V.
Журнал: Журнал Сибирского федерального университета. Серия: Техника и технологии @technologies-sfu
Рубрика: Математическое моделирование. Численный эксперимент
Статья в выпуске: 5 т.17, 2024 года.
Бесплатный доступ
The features of boundary element methods (method of moments), finite element methods, finite difference methods in the time domain, and finite integral methods for volumetric space modeling are examined. The classification of finite element method variants is presented. The advantages of finite difference methods in the time domain are described and structurally presented. The MoM, FEM, FDTD, and FIT methods are generalized for modeling the electromagnetic environment inside and outside of buildings, taking into account the complex influence of electromagnetic fields and radiation in a wide frequency range, as well as the possibility of accelerating the processes of forming distribution patterns of electromagnetic field components and patterns of electromagnetic hazard.
Computer modeling, computer visualization, electromagnetic field, finite element method
Короткий адрес: https://sciup.org/146282905
IDR: 146282905
Список литературы The choice of method of computer simulation for formation of pictures of danger of electromagnetic environment
- Gizatullin Z. M., Nuriev M. G., Gizatullin R. M. Physical Simulation of Electromagnetic Interference in Electronic Mains under the Effect of Electromagnetic Fields of High-Voltage Power Lines, Russian Electrical Engineering, 2018, 89(5), 328–331.
- Titov E. V., Soshnikov A. A., Migalev I. E. Computer Imaging of Electromagnetic Environment in Air Space with Industrial Electromagnetic Field Sources in Conditions of Combined Influence of EM Radiation, Journal of Electromagnetic Engineering and Science, 2020, 22(1), 34–40.
- Sarkar D. and Antar Y. M. M. FDTD Computation of Space/Time Integrated Electromagnetic Lagrangian: New Insights Into Design of Mutually Coupled Antennas, IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2022, 7, 16–22.
- Cai W. Yi, Y. Optimal error estimates of finite difference time domain methods for the Klein–Gordon–Dirac system, IMA Journal of Numerical Analysis, 2020, 40(2), 1266–1293.
- He J., Li X., Tao S., Cao L. and Wang X. Electromagnetic Radiation Mechanism Analysis and Field Strength Prediction of an Elementary Digital Inverter with Cables, Chinese Journal of Electrical Engineering, 2022, 8(3), 37–48.
- Ward B. G. Hybrid Surface Electric Field Volume Magnetic Field Integral Equations for Electromagnetic Analysis of Heterogeneous Dielectric Bodies With Embedded Electrically Conducting Structures, IEEE Transactions on Antennas and Propagation, 2020, 69(3), 1545–1552.
- Soshnikov A. A., Migalev I. E. and Titov E. V. A mobile system for integrated evaluation of electromagnetic radiation danger level, Russian Electrical Engineering, 2018, 89, 685–68.
- Martín V. F., Solís D. M., Araújo M. G., Landesa L., Obelleiro F. and Taboada J. M. Discontinuous Galerkin Integral Equation Approach for Electromagnetic Modeling of Realistic and Complex Radiating Systems, IEEE Transactions on Antennas and Propagation, 2023, 71(5), 4606–4611.
- Xie G., Fang M., Huang Z., Wu X., Ren X. and Feng N. A Numerical Study of Lossy Multipole Debye Dispersive Media Using a Recursive Integral-FDTD Method, IEEE Transactions on Microwave Theory and Techniques, 2022, 71(3), 1009–1018.
- Tian W., Wei B. and He X. Improved FDTD Method for Coupling Analysis of a Dielectric-Coated Wire Above Rough Soil Surface Under HPEM Pulse, IEEE Transactions on Electromagnetic Compatibility, 2021, 64(1), 129–138.
- Zhang Y., Feng N., Wang L. et al., An FDTD Method for Fully Anisotropic Periodic Structures Impinged by Obliquely Incident Plane Waves, IEEE Transactions on Antennas and Propagation, 2020, 68(1), 366–376.
- Chen C., Kruglyakov M. and Kuvshinov A. Advanced three-dimensional electromagnetic modelling using a nested integral equation approach, Geophysical Journal International, 2021, 226(1), 114–130.
- Hu Y., Jin Y., Wu X. and Chen J. A Theory-Guided Deep Neural Network for Time Domain Electromagnetic Simulation and Inversion Using a Differentiable Programming Platform, IEEE Transactions on Antennas and Propagation, 2022, 70(1), 767–772.
- Wei X., Wachters A. J. H. and Urbach H. P. Finite-element model for three-dimensional optical scattering problems, Journal of optic Society of America A, 2007, 24, 866–881.
- Mock A. Multiorder Harmonic Analysis of Time-Varying Media Using Time-Domain Simulation, IEEE Transactions on Microwave Theory and Techniques, 2023, 71(2), 561–569.
- Installation for pre-sowing seed treatment with an ultrahigh frequency electromagnetic field: utility model No. 61496 / N. V. Tsuglenok, A. V. Bastron, A. V. Meshcheryakov. – publ. 17.10.06; registered in the registry on 02/27/2007.
- Титов Е. В. Методология комплексного контроля и визуализации электромагнитной обстановки в АПК, диссертация на соискание ученой степени доктора технических наук, Барнаул, 2021 [Titov, E. V. Methodology of integrated control and visualization of the electromagnetic environment in agriculture, dissertation for the degree of Doctor of Technical Sciences, Barnaul, 2021 (in Rus.)]