The Construction of two classes of 4-valent tri- Cayley Graphs over Cyclic Group

Автор: Xiaohan Ye, Huanzhi Zhang

Журнал: International Journal of Mathematical Sciences and Computing @ijmsc

Статья в выпуске: 1 vol.10, 2024 года.

Бесплатный доступ

The symmetry of the graph has always been a hot topic in graph theory and the vertex-transitive graphs are a class of graphs with high symmetry. Cayley graphs which are the highly symmetrical graphs play an important role and much work has been done in the study. The tri-Cayley graph is a natural generalization of the Cayley graph. A graph is said to be a tri-Cayley graph if it admits a semiregular subgroup of automorphisms having three orbits of equal length. Koács et al. classified the cubic symmetric tricirculants in 2012 and Potočnik et al. classified the cubic vertex-transitive tricirculants in 2018. Currently, there is no research on the classification of 4-valent tri-Cayley graphs over cyclic group. In this paper, we will construct two classes of 4-valent tri-Cayley graphs over cyclic group and discuss their automorphism groups. In addition, the vertex transitivity, edge transitivity and arc transitivity are proved.

Еще

Tri-Cayley graph, cyclic group, vertex-transitive, automorphism group, edge-transitive, arc-transitive

Короткий адрес: https://sciup.org/15019070

IDR: 15019070   |   DOI: 10.5815/ijmsc.2024.01.01

Список литературы The Construction of two classes of 4-valent tri- Cayley Graphs over Cyclic Group

  • J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Elsevier North Holland, New York, 1976.
  • H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.
  • K. Kutnar, D. Marušič, S. Miklavič, P. Šparl, Strongly regular tri-Cayley graphs, European Journal of Combinatorics. (2009), 30(4), 822-832.
  • I. Koács, K. Kutnar, D. Marušič, S. Wilson, Classification of cubic symmetric tricirculants, The Electronic Journal of Combinatorics. (2012), 19(2), 24.
  • P. Potočnik, M. Toledo, Classification of cubic vertex-transitive tricirculants, arXiv preprint arXiv: 1812.04153, 2018.
  • D. Marušič, T. Pisanski, Symmetries of hexagonal molecular graphs on the torus, Croatica Chemica Acta. (2000), 73(4), 969-981.
  • M. Boben, T. Pisanski, A. Žitnik, I‐graphs and the corresponding configurations, Journal of Combinatorial Designs. (2005), 13(6), 406-424.
  • A. Devillers, M. Giudici, W. Jin, Arc-transitive bicirculants, Journal of the London Mathematical Society. (2022), 105(1), 1-23.
  • W. Jin, Two-arc-transitive bicirculants, arXiv preprint arXiv: 2211.14520, 2022.
  • I. Koács, B. Kuzman, A. Malnič, S. Wilson, Characterzation of edge-transitive 4-valent bicirculant, Journal of Graph Theory. (2012), 69, 441-463.
  • T. Pisanski, A classification of cubic bicirculants, Discrete Mathematics. (2007), 307(3-5), 567-578.
  • I. Kovács, A. Malnič, D. Marušič, Š. Miklavič, One-matching bi-Cayley graphs over abelian groups, European Journal of Combinatorics. (2009), 30(2), 602-616.
  • J. X. Zhou, Y. Q. Feng, Cubic bi-Cayley graphs over abelian groups, European Journal of Combinatorics. (2014), 36, 679-693.
  • M. Conder, J. X. Zhou, Y. Q. Feng, M. M. Zhang, Edge-transitive bi-Cayley graphs, Journal of Combinatorial Theory, Series B. (2020), 145, 264-306.
  • J. M. Pan, Y. N. Zhang, An explicit characterization of cubic symmetric bi-Cayley graphs on nonabelian simple groups, Discrete Mathematics. (2022), 345(9): 112954.
  • M. M. Zhang, J. X. Zhou, Trivalent vertex-transitive bi-dihedrants, Discrete Mathematics. (2017), 340(8), 1757-1772.
  • M. Y. Xu, Finite group preliminary, Science Press, Bei Jing, 2014.
Еще
Статья научная