The dependence of melt viscosity of polymer nanocomposites on type of carbon nanotubes fractal structures
Автор: Mikitaev Muslim Abdulahovich, Kozlov Georgiy Vladimirovich, Mikitaev Abdulah Kasbulatovich, Schiraldi David A., Zaikov Gennadiy Efremovich
Журнал: НБИ технологии @nbi-technologies
Рубрика: Технико-технологические инновации
Статья в выпуске: 1 (16), 2015 года.
Бесплатный доступ
As it is known, any real fractal object can be simulated as a bulk or surface fractal. In the first case the structure fractality is extended to the entire volume of the object and in the second one - to its surface. For nanocomposites, the matrix of which makes up polymer poly(ethylene terephthalate)/poly(butylene terephthalate) blend, the fractal dimensions of both structure and surface of ring-like formations of nanofiller (multiwalled CNT) were calculated. It has been found out that in case of their notion as bulk fractals, i.e. matrix polymer penetration in ring-like formations internal regions, the strong enhancement of the nanocomposites melt viscosity is observed and in case of surface fractals this parameter is independent on nanofiller contents.
Nanocomposite, blend, carbon nanotubes, melt, viscosity, fractal
Короткий адрес: https://sciup.org/14968377
IDR: 14968377 | DOI: 10.15688/jvolsu10.2015.1.3
Список литературы The dependence of melt viscosity of polymer nanocomposites on type of carbon nanotubes fractal structures
- Balankin A.S. Synergetics of Deformable Body. Moscow, Publishing Ministry of Defence SSSR, 1991. 404 p..
- Bridge B.J. Ceramic Matrix Composite Toughening Mechanisms: an Update, in Ceramic Science and Engineering Series. Mater. Sci. Lett., 1989, vol. 8, no. 2, pp. 102-103.
- Feder E. Fractals. New York, Plenum Press, 1989. 256 p.
- Grigoryev E., Vasilyev A., Dolgov K. The Influence of the Arrangement Scheme on Balancing and Mass Dimension Parameters of Engines. Mekhanika, 2006, vol. 61, no. 5, pp. 46-50.
- Kalinchev E.L., Sakovtseva M.B. Properties and Processing of Thermoplasts. Leningrad, Khimiya Publ., 1983. 288 p.
- Kozlov G.V., Dolbin I.V., Zaikov G.E. Fractal Physical Chemistry of Polymer Solutions and Melts. Toronto, New Jersey, Apple Academic Press, 2014. 316 p.
- Kozlov G.V., Sanditov D.S. Anharmonic Effects and Physical-Mechanical Properties of Polymers. Novosibirsk, Nauka Publ., 1994. 261 p.
- Kozlov G.V., Zhirikova Z.M., Aloev V.Z., Zaikov G.E. Structure and Properties of Particulate-Filled Composites: the Fractal Analysis. Polymer Research J., 2012, vol. 6, no. 3, pp. 267-273.
- Mikitaev A.K., Kozlov G.V., Zaikov G.E. Polymer Nanocomposites: Variety of Structural Forms and Applications. New York, Nova Science Publishers, Inc., 2008. 319 p.
- Mills N.J. The Rheology of Filled Polymers. J. Appl. Polymer Sci., 1971, vol. 15, no. 11, pp. 2791-2805.
- Rajakumar P.R., Nanthini R. A Synthesis of Substituted 4-Aminoquinolines. Int. J. Adv. Chem., 2013, vol. 1, no. 2, pp. 39-42.
- Schaefer D.W., Justice R.S. Macromolecules, 2007, vol. 40, no. 24, pp. 8501-8517.
- Vasilyev A. Simulation of Valve Gear Dynamics Using Generalized Dynamic Model. Mekhanika, 2006, vol. 58, no. 2, pp. 37-43.
- Weitz D.A., Huang J.S., Lin M.Y., Sung J. Dynamics of Diffusion-Limited Kinetic Aggregation. Phys. Rev. Lett., 1984, vol. 53, no. 17, pp. 1657-1660.
- Yanovskiy Yu.G., Kozlov G.V., Zhirikova Z.M., Aloev V.Z., Karnet Yu.N. Karnet Special features of the structure of carbon nanotubes in polymer composite media. Int. J. Nanomechanics Sci. Techn., 2012, vol. 3, no. 2, pp. 99-124.