The effect of reliability index values on resulting reliability-based topology optimization configurations: numerical validation by shape optimization

Автор: Kharmanda Ghias, Antypas Imad R., Dyachenko Alexey G.

Журнал: Инженерные технологии и системы @vestnik-mrsu

Рубрика: Информатика, вычислительная техника и управление

Статья в выпуске: 3, 2019 года.

Бесплатный доступ

Introduction. The classical topology optimization leads to structural type and general layout prediction and gives a rough description of the shape of both the external and internal structure boundaries. However, Reliability-Based Topology Optimization (RBTO) model produces multiple reliability-based topologies with high levels of performance. The aim of this work is to study the effect of reliability changes on the obtained topologies. Materials and Methods. The developed Gradient-Based Method (GBM) has been used efficiently as a general method for several applications (statics and dynamics). When considering several reliability levels, several topologies can be obtained. In order to compare the resulting topologies, a shape optimization is considered as a detailed design aspect. Results. Numerical applications are carried out on an MBB (Messerschmitt-Bolkow-Blohm) beam subjected to a distributed load. The DTO model is carried out without consideration of reliability concept. However, for the RBTO model, an interval of reliability is considered that produces several topologies. Here, the randomness is applied on geometry and material parameters. The application of the shape optimization algorithm leads to reduced structural volumes when increasing the reliability levels. Discussion and Conclusion. In addition to its simplified implementation, the developed GBM strategy can be considered as a generative tool to provide the designer with several solutions. The shape optimization is considered as a numerical validation of the importance of the different resulting RBTO layouts.

Еще

Deterministic topology optimization, reliability-based topology optimization, gradient-based method

Короткий адрес: https://sciup.org/147220623

IDR: 147220623   |   DOI: 10.15507/2658-4123.029.201903.332-344

Список литературы The effect of reliability index values on resulting reliability-based topology optimization configurations: numerical validation by shape optimization

  • Bendsoe M. P., Kikuchi N. Generating Optimal Topologies in Optimal Design Using a Homog-enization Method//Computer Methods in Applied Mechanics and Engineering. 1988. Vol. 71, Issue 2. Pp. 197-224. (88)90086-2 DOI: 10.1016/0045-7825
  • Reliability-Based Topology Optimization/G. Kharmanda //Structural and Multidisciplinary Optimization. 2004. Vol. 26, Issue 5. Pp. 295-307. DOI: 10.1007/s00158-003-0322-7
  • Reliability-Based Topology Optimization for Different Engineering Applications/G. Khar-manda //International Journal of CAD/CAM. 2007. Vol. 7, no. 1. Pp. 61-69. URL: http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=E1CDBZ_2007_v7n1_61 (дата обращения: 01.05.2019).
  • Patel J., Choi S. K Classification Approach for Reliability-Based Topology Optimization Using Probabilistic Neural Networks//Journal of Structural and Multidisciplinary Optimization. 2012. Vol. 45, Issue 4. Pp. 529-543. DOI: 10.1007/s00158-011-0711-2
  • A Novel Method of Non-Probabilistic Reliability-Based Topology Optimization Corresponding to Continuum Structures with Unknown but Bounded Uncertainties/L. Wang //Computer Methods in Applied Mechanics and Engineering. 2017. Vol. 326. Pp. 573-595. DOI: 10.1016/j.cma.2017.08.023
  • Reliability-Based Topology Optimization Using a Standard Response Surface Method for Three-Dimensional Structures/Y.-S. Eom //Journal of Structural and Multidisciplinary Optimization. 2011. Vol. 43, Issue 2. Pp. 287-295.
  • DOI: 10.1007/s00158-010-0569-8
  • Jalalpour M., Tootkaboni M. An Efficient Approach to Reliability-Based Topology Optimization for Continua under Material Uncertainty//Journal of Structural and Multidisciplinary Optimization. 2016. Vol. 53, Issue 4. Pp. 759-772.
  • DOI: 10.1007/s00158-015-1360-7
  • Харманда Г. Точечный метод как самый безопасный и эффективный инструмент для оптимизации на основе надежности//Вестник Донского государственного университета. 2017. Т. 17, № 2. С. 46-55.
  • DOI: 10.23947/1992-5980-2017-17-2-46-55
  • Reliability-Based Design Optimization for Multiaxial Fatigue Damage Analysis Using Robust Hybrid Method/A. Yaich //Journal of Mechanics. 2017. Vol. 34, Issue 5. Pp. 551-556.
  • DOI: 10.1017/jmech.2017.44
  • Kharmanda G., Antypas I. R., Dyachenko A. G. Inverse Optimum Safety Factor Method for Reliability-Based Topology Optimization Applied to Free Vibrated Structures//Engineering Technologies and Systems. 2019. Vol. 29, no. 1. Pp. 8-19.
  • DOI: 10.15507/2658-4123.029.201901.008-019
  • Bendsoe M P. Optimal Shape Design as a Material Distribution Problem//Structural Optimization. 1989. Vol. 1, Issue 4. Pp. 193-202.
  • DOI: 10.1007/BF01650949
  • Bendsoe M. P., Sigmund O. Material Interpolations in Topology Optimization//Archive of Applied Mechanics. 1999. Vol. 69, Issue 9-10. Pp. 635-654.
  • DOI: 10.1007/s004190050248
  • Харманда Г., Антибас И. Интеграция концепции надежности в проектирование почвообраба-тьшающих машин//Вестник Донского государственного технического университета. 2015. № 2 (81). С. 22-31.
  • Харманда М. Г., Антибас И. Р. Стратегия оптимизации проектирования надежности почвообрабатывающей техники с учетом параметрической неопределенности почвы//Вестник Донского государственного технического университета. 2016. Т. 16, № 2. С. 136-147.
  • DOI: 10.12737/19690
  • Ibrahim M.-H., Kharmanda G., Charki A. Reliability-Based Design Optimization for Fatigue Damage Analysis//The International Journal of Advanced Manufacturing Technology. 2015. Vol. 76, Issue 5-8. Pp. 1021-1030.
  • DOI: 10.1007/s00170-014-6325-2
  • Rozvany G. I. N., Zhou M., Birker T. Generalized Shape Optimization without Homogeniza-tion//Structural Optimization. 1992. Vol. 4, Issue 3-4. Pp. 250-252. URL: https://link.springer.com/content/pdf/10.1007%2FBF01742754.pdf (дата обращения: 01.05.2019).
  • Zhou M., Rozvany G. I. N. The COC Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization//Computer Methods in Applied Mechanics and Engineering. 1991. Vol. 89, Issue 1-3. Pp. 309-336. (91)90046-9
  • DOI: 10.1016/0045-7825
  • Rozvany G. I. N., Bendsee M. P., Kirsch U. Addendum "Layout Optimization of Structures"//Applied Mechanics Reviews. 1995. Vol. 48, Issue 2. Pp. 41-119.
  • DOI: 10.1115/1.3101884
  • Duysinx P., Van Miegroet L., Jacobs T., Fleury C. Generalized Shape Optimization Using X-FEM and Level Set Methods//Solid Mechanics and its Applications. 2006. Vol. 137, Pp. 23-32.
  • DOI: 10.1007/1-4020-4752-5_3
  • Madsen S., Lange N. P., Giuliani L., et al. Topology Optimization for Simplified Structural Fire Safety//Engineering Structures. 2016. Vol. 124. Pp. 333-343.
  • DOI: 10.1016/j.engstruct.2016.06.018
  • Rostami S. A. L., Ghoddosian A. Topology Optimization under Uncertainty by Using the New Collocation Method//Periodica Polytechnica Civil Engineering. 2019. Vol. 63, Issue 1. Pp. 278-287.
  • DOI: 10.3311/PPci.13068
Еще
Статья научная