The effect of seed treatment with gamma irradiation on biometric indices and chlorophyll synthesis in the maize (Zea mays) plant grown under salt stress
Автор: Jafarov E.S., Velijanova M.Z., Babayev H.G.
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 2 т.18, 2022 года.
Бесплатный доступ
The presented research is about the effect of seed treatment with γ-radiation on the development of the maize plant and on the chlorophyll synthesis under salt stress. It has been revealed that separately high doses of radiation and low or high NaCl concentrations inhibit the plant growth as well as chlorophyll synthesis in the leaves, while pre-sowing irradiation of the seeds with a dose of 50 Gy stimulates the growth of the plant and chlorophyll synthesis even at high concentrations of NaCl.
Biometric indices, chlorophyll, maize (zea mays), presowing seed irradiation, salt stress
Короткий адрес: https://sciup.org/143178807
IDR: 143178807
Список литературы The effect of seed treatment with gamma irradiation on biometric indices and chlorophyll synthesis in the maize (Zea mays) plant grown under salt stress
- Antonov M., Minteva D., Dinoeva S. (2002). Influence of combined gamma irradiation and laser beams on corn seeds. Soil knowledge, Agrochemistry and Ecology. 37(1-3), 94-96.
- Ashraf M., Harris P.J.C. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica. 5, 163-190. DOI: 10.1007/s11099-013-0021-6
- Beyaz R. (2019). Impact of gamma irradiation pretreatment on the growth of common vetch (Vicia sativa L.) seedlings grown under salt and drought stress. Inter. Journal of Radiation Biology. 11, 257266. doi.org/10.1080/09553002.2020.1688885
- Chaves M.M, Oliveira M.M. (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany. 55,2365-2384. doi.org/10.1093/jxb/erh269. Dehpour A.A., Gholampour M., Rahdary P. et al. (2011).
- Effect of gamma irradiation and salt stress on germination, callus, protein and proline in rice (Oryza sativa L.). Iranian Journal of Plant Physiology.1 (4), 251 -256.
- El-Beltagi H. S., Mohamed H. I., Mohammed A. H. M.A. et al. (2013). Physiological and Biochemical Effects of y-Irradiation on Cowpea Plants (Vigna sinensis) under Salt Stress. Not Bot Horti Agrobo, 41(1), 104114. D0l:10.15835/nbha4118927.
- Flexas J., Diaz-Espejo A., Galme's J. et al. (2007). Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant, Cell & Environment. 30, 1284-1298. doi: 10.1111/j.1365-3040.2007.01700.x.
- Geng X., Zhang Y., Wang L. and Yang X. (2019). Pretreatment with High-Dose Gamma Irradiation on Seeds Enhances the Tolerance of Sweet Osmanthus Seedlings to Salinity Stress. Forests. 10(406), 1-11. doi.org/10.3390/f10050406.
- Hanafy Ahmed A. H., Ghalab A. R. M., Hussein O. S. and El-Hefny A. M. (2011). Effect of Gamma Rays and Salinity on Growth and Chemical Composition of Ambrosia maritima L. Plants. Journal of Radiation Research and Applied Sciences. 4, (4(A)), 1139 - 1162.
- Hasanuzzaman M., Nahar K., Fujita M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P., Azooz M.M., Prasad M.N.V. (eds) Ecophysiology and responses of plants under salt stress. New York: Springer; p. 25-87.
- Helaly M.N.M. and Hanan El-Hosieny A.M.R. (2011). Effectiveness of Gamma Irradiated Protoplasts on Improving Salt Tolerance of Lemon (Citrus limon L. Burm.f.). American Journal of Plant Physiology. 6(4), 190-208. DOI: 10.3923/ajpp.2011.190.208.
- Koseki P.M., Villavicencio A.L.C.H., Brito M.S. et al. (2002). Effects of irradiation in medicinal and eatable herbs. Radiat. Phys. And Chem. 63(3-6), 681-684. 10.1016/S0969-806X(01)00658-2.
- Kulikov N.V., Alshchits L.K., Pozolotin A.A. (1991). Investigation of the radioresistance of some plants. Radiobiology. 31(4), 441-446.
- Kumar P., Sharma V., Yadav P. and Singh B. (2017). Gamma Ray Irradiation for Crop Protection against Salt Stress. Defence Life Science Journal. 2(3), 292-300. doi.org/10.14429/dlsj.2.11670.
- Kuzin A.M. (1986). Structural and metabolic theory in radiobiology. M: Nauka, 284 p.
- Lakin Q. F. (1990). Biometrics. M. Nauka. 352 p.
- Lawlor D.W., Cornic G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment. 25, 275-294. doi: 10.1046/j.0016-8025.2001.00814.x.
- Macovei A., Garg B., Raikwar S., et al. (2014). Synergistic Exposure of Rice Seeds to Different Doses of y-Ray and Salinity Stress Resulted in Increased Antioxidant Enzyme Activities and Gene Specific Modulation of TC-NER Pathway. Bio.Med.Research International. 2014,1-15. doi.org/10.1155/2014/676934.
- Mishra P., Bhoomika K., Dubey R.S. (2013). Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and saltsensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma. 250, 3-19. doi: 10.1007/s00709-011-0365-3.
- Mohammed A. H., Mohamed H. I., Zaki L. M. & Mogazy A. M. (2012). Pre-exposure to gamma rays alleviates the harmful effect of salinity on cowpea plants. J. Stress Physiol. Biochem. 8, 199 -217.
- Mokronosov A.T. (1981). Ontogenetic aspect of photosynthesis. M: Nauka. 196 p.
- Munns R, James RA, La'uchli A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany. 57, 10251043. doi.org/10.1093/jxb/erj100.
- Nazirov N.N. (1964). The effect of ionizing radiation on the intensity of photosynthesis and respiration in varieties of bleach varieties of different early maturity. Plant Physiol.1(2), 328.
- Passioura J. (2007). The drought environment: physical, biological and agricultural perspectives. Journal of Experimental Botany. 58, 113-117. doi.org/10.1093/jxb/erl212.
- Qi W., Zhangb L., Xua H. et al. (2014). Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings. Biochemical and Biophysical Research Communications. 450(2),1010-1015. doi: 10.1016/j.bbrc.2014.06.086.
- Rejili M., Telahigue D., Lachiheb B., Mrabet A., Ferchichi A.. (2008). Impact of gamma radiation and salinity on growth and K+/Na+ balance in two populations of Medicago sativa (L.) cultivar Gabe's. Progress in Natural Science. 18, 1095-1105. doi.org/10.1016/j.pnsc.2008.04.004.
- Saakov V.S. (2002). Features of the action of y -radiation on the fine structure of the photosynthetic apparatus: assessment of the nature of disturbances in vivo using derivatives of high-order spectra. Academy of Sciences reports (Russia). 387(2), 265-271.
- Sansenya S., Hua Y., Chumanee S.and Sricheewin C. (2019). The Combination Effect of Gamma Irradiation and Salt Concentration on 2-acetyl-1-pyrroline Content, Proline Content and Growth of Thai Fragrant Rice (KDML 105). Oriental journal of chemistry. 35(3),938-946. DOI : http://dx.doi.org/10.13005/ojc/350304.
- Sims D.A. and Gamon J.A. (2002). Retationships between leaf piqment content and spectral reflectance across a wide rang of species, leaf structures and devolepmental stages. Remote Sensing of Enviroment. 81, 337-354. doi.org/10.1016/S0034-4257(02)00010-X.
- Song J. Y., Kim D. S., Lee M.-C. et al. (2012). Physiological characterization of gamma-ray induced salt tolerant rice mutants. Australian Journal of Crop Science. 6(3), 421-429.
- Stobart A. K., Griffiths W.T. (1985). The effect of Cd2+ on the biosynthesis of chlorofyll in leaves of barley. Physiol. Plant. 63(3), 293-298.
- Wang X., Ma R., Cao Q., Shan Z. & Jiao Z.. (2018). Enhanced tolerance to salt stress in highland barley seedlings (Hordeum vulgare ssp. vulgare) by gamma irradiation pretreatment. Acta Physiologiae Plantarum. 40(9), 174. Doi: 10.1007/s11738-018-2736-2.