The formula for the lower estimate of the fundamental frequency of natural vibrations of a truss with an arbitrary number of panels

Автор: Kirsanov Mikhail Nikolaevich, Petrichenko Elizaveta Alexandrovna, Vorobev Oleg Vladimirovich

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 1 (94), 2021 года.

Бесплатный доступ

The object of the research is a planar, statically determinate girder of the beam type with a triple diagonal lattice.The truss mass is modeled by equal masses distributed over the nodes of the lower chord. By the Dunkerley method, under the assumption of vertical vibrations of loads, a lower analytical estimate of the first natural vibration frequency is obtained. Method. The forces in the members are calculated by cutting out nodes from the solution of a system of linear algebraic equations. Generalization of individual solutions to the case of an arbitrary number of panels is carried out by the induction method with the involvement of operators of the Maple computer mathematics system. Results. Comparison with the numerical solution found from the solution on the spectrum of natural vibrations of a multi-mass system shows that the estimation accuracy depends on the number of panels and varies from 16% for trusses with two panels to 4% for trusses with more than 11 panels. With a decrease in the ratio of the panel height to its length, the accuracy slightly increases. Based on the analysis of the derived formula, it is shown that the dependence of the first frequency on the height of the truss has a maximum. An algorithm for generalizing the solution to the case of members of different stiffness is proposed.

Еще

Truss, natural vibrations, lower frequency estimate, dunkerley 's method, maple, induction

Короткий адрес: https://sciup.org/143175781

IDR: 143175781   |   DOI: 10.4123/CUBS.94.3

Список литературы The formula for the lower estimate of the fundamental frequency of natural vibrations of a truss with an arbitrary number of panels

  • Kirsanov, M.N., Buka-Vaivade, K. Analytical expressions of frequencies of small oscillations of a beam truss with an arbitrary number of panels. Structural mechanics and structures. 2019. 23(4). Pp. 7–14. URL: http://vuz.exponenta.ru/PDF/NAUKA/Karina23.pdf (date of application: 27.02.2021).
  • Vorobev, O.V. Bilateral Analytical Estimation of the First Frequency of a Plane Truss. Construction of Unique Buildings and Structures. 2020. 92(7). Pp. 9204–9204. DOI:10.18720/CUBS.92.4. URL: https://unistroy.spbstu.ru/article/2020.92.4 (date of application: 27.02.2021).
  • Al-Sharabi Ali, M.A., Kirsanov, M.N. Analysis of natural frequencies for the multi-link lift. Science Almanac. 2017. 28(2–3). Pp. 234–237. DOI:10.17117/na.2017.02.03.234.
  • Liu, M., Cao, D., Zhang, X., Wei, J., Zhu, D. Nonlinear dynamic responses of beamlike truss based on the equivalent nonlinear beam model. International Journal of Mechanical Sciences. 2021. 194. Pp. 106197. DOI:10.1016/j.ijmecsci.2020.106197.
  • Arutyunyan, V.B. Analytical calculation of the deflection street bracket for advertising. Postulat. 2019. 1. URL: http://vuz.exponenta.ru/PDF/NAUKA/Arut2019-1.pdf (date of application: 27.02.2021).
  • Voropay, R.A., Domanov, E.V. Analytical solution of the problem of shifting a movable support of a truss of arch type in the Maple system. Postulat. 2019. 1. URL: http://vuz.exponenta.ru/PDF/NAUKA/VoropDom2019-1.pdf (date of application: 27.02.2021).
  • Rakhmatulina, A.R., Smirnova, A.A. Two-parameter derivation of the formula. Postulat. 2018. 31(5–1). URL: http://vuz.exponenta.ru/PDF/NAUKA/RahmSmirn2.pdf (date of application: 1.03.2021).
  • Rakhmatulina, A.R., Smirnova, A.A. The formula for the deflection of a truss loaded at half-span by a uniform load. Postulat. 2018. 29(3). URL: http://vuz.exponenta.ru/PDF/NAUKA/RahmSmirn2018-1.pdf (date of application: 1.03.2021).
  • Rakhmatulina, A. R., Smirnova, A.A. Analytical calculation and analysis of planar springel truss. Structural mechanics and structures. 2018. 17(2). Pp. 72–79. URL: http://vuz.exponenta.ru/PDF/NAUKA/Rahm-Smirn2018-2.pdf (date of application: 27.02.2021).
  • Ilyushin, A.S. The formula for calculating the deflection of a compound externally statically indeterminate frame. Structural mechanics and structures. 2019. 22(3). Pp. 29–38. URL: https://elibrary.ru/item.asp?id=41201106 (date of application: 27.02.2021).
  • Hutchinson, R.G., Fleck, N.A. Microarchitectured cellular solids - The hunt for statically determinate periodic trusses. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 2005. 85(9). Pp. 607–617. DOI:10.1002/zamm.200410208.
  • Hutchinson, R.G., Fleck, N.A. The structural performance of the periodic truss. Journal of the Mechanics and Physics of Solids. 2006. 54(4). Pp. 756–782. DOI:10.1016/j.jmps.2005.10.008.
  • Zok, F.W., Latture, R.M., Begley, M.R. Periodic truss structures. Journal of the Mechanics and Physics of Solids. 2016. 96. Pp. 184–203. DOI:10.1016/j.jmps.2016.07.007.
  • Chen, J., Zhang, W., Zhang, Y.F. Equivalent continuum model and nonlinear breathing vibrations of rotating circular truss antenna subjected to thermal excitation. Thin-Walled Structures. 2020. 157(August). Pp. 107–127. DOI:10.1016/j.tws.2020.107127.
  • Tancogne-Dejean, T., Mohr, D. Stiffness and specific energy absorption of additively-manufactured metallic BCC metamaterials composed of tapered beams. International Journal of Mechanical Sciences. 2018. 141. Pp. 101–116. DOI:10.1016/j.ijmecsci.2018.03.027.
  • Li, S., Jiang, W., Tu, S.T. Life prediction model of creep-rupture and creep-buckling of a pyramidal lattice truss panel structure by analytical and finite element study. International Journal of Mechanical Sciences. 2018. 141. Pp. 502–511. DOI:10.1016/j.ijmecsci.2018.04.026.
  • Pekcan, G., Itani, A.M., Linke, C. Enhancing seismic resilience using truss girder frame systems with supplemental devices. Journal of Constructional Steel Research. 2014. 94. Pp. 23–32. DOI:10.1016/j.jcsr.2013.10.016. URL: http://dx.doi.org/10.1016/j.jcsr.2013.10.016.
  • Resatalab, S., Ahmadi, M.T., Alembagheri, M. Seismic response sensitivity analysis of intake towers interacting with dam, reservoir and foundation. Magazine of Civil Engineering. 2020. 98(7). Pp. 9901–9901. DOI:10.18720/MCE.99.1. URL: https://engstroy.spbstu.ru/article/2020.99.1 (date of application: 27.02.2021).
  • Martins, A.M.B., Simões, L.M.C., Negrão, J.H.J.O. Optimization of extradosed concrete bridges subjected to seismic action. Computers and Structures. 2021. 245. DOI:10.1016/j.compstruc.2020.106460.
  • Tarasov, V.A. Double Seismic Insulation System of Turbine Unit Foundation. Construction of Unique Buildings and Structures. 2020. 91(6). Pp. 9101–9101. DOI:10.18720/CUBS.91.1. URL: https://unistroy.spbstu.ru/article/2020.91.1 (date of application: 27.02.2021).
  • Akhaveissy, A.H., Milani, G. Pushover analysis of large scale unreinforced masonry structures by means of a fully 2D non-linear model. Construction and Building Materials. 2013. 41. Pp. 276–295. DOI:10.1016/j.conbuildmat.2012.12.006.
  • Serpik, I.N., Alekseytsev, A. V., Balabin, P.Y., Kurchenko, N.S. Flat rod systems: Optimization with overall stability control. Magazine of Civil Engineering. 2017. 76(8). Pp. 181–192. DOI:10.18720/MCE.76.16. URL: https://engstroy.spbstu.ru/article/2017.76.16 (date of application: 27.02.2021).
  • Kooshkbaghi, M., Kaveh, A. Sizing Optimization of Truss Structures with Continuous Variables by Artificial Coronary Circulation System Algorithm. Iranian Journal of Science and Technology - Transactions of Civil Engineering. 2020. 44(1). DOI:10.1007/s40996-019-00254-2.
  • Degertekin, S.O., Yalcin Bayar, G., Lamberti, L. Parameter free Jaya algorithm for truss sizing-layout optimization under natural frequency constraints. Computers and Structures. 2021. 245. Pp. 106461. DOI:10.1016/j.compstruc.2020.106461.
  • Hou, C., Han, L.H., Mu, T.M., He, S.H. Analytical behaviour of CFST chord to CHS brace truss under flexural loading. Journal of Constructional Steel Research. 2017. 134. Pp. 66–79. DOI:10.1016/j.jcsr.2017.03.008.
  • Kirsanov M. Planar Trusses: Schemes and Formulas - Cambridge Scholars Publishing. URL: https://www.cambridgescholars.com/product/978-1-5275-3531-2 (date of application: 27.02.2021).
  • Zotos, K. Performance comparison of Maple and Mathematica. Applied Mathematics and Computation. 2007. 188(2). Pp. 1426–1429. DOI:10.1016/j.amc.2006.11.008.
  • Szeidl, G., Kiss, L.P. Introduction. Mechanical Vibrations. Springer, 2020. Pp. 1–29.
Еще
Статья научная