The influence of duration of high-temperature exposure on the properties of carbon nitride obtained in molten salts

Бесплатный доступ

In the present work the influence of duration of thermal treatment on the properties and photocatalytic performance of carbon nitride materials is investigated. Preparation of photocatalytic material proceeded in the eutectic molten salts KCl/LiCl mixture. This way of thermal treatment results in crystalline material with ordered structure, improved in comparison to convenient preparation methods. Duration was altered in range from 2 to 10 hours. Materials were studied by the methods of X-ray diffraction patterns, scanning electron microscopy. It was found that most ordered materials with the maximal degree of crystallinity are formed after 2-6 hours of high-temperature treatment. Elongation of thermal treatment up to 8 and 10 hours leads to less ordered material with the enhanced share o amorphous phase. Carbon nitride materials were used as photocatalysts for the selective oxidation of benzyl alcohol to benzaldehyde and demonstrate high selectivities to target product. 2 hours of thermal treatment leads to formation of photocatalyst with the highest conversion (79.2 %) and selectivity (92.4 %) values. Less effective material is formed after 10 hours of treatment, where selecivity level retained, while conversion drops to 48.6 %. Morphology of materials has maximal effect on the photocatalytic properties - high crystallinity is the main feature of catalytically effective materials.

Еще

Carbon nitride, hydrothermal, photocatalysis

Короткий адрес: https://sciup.org/147234261

IDR: 147234261   |   DOI: 10.14529/chem210210

Список литературы The influence of duration of high-temperature exposure on the properties of carbon nitride obtained in molten salts

  • Cui Y., Tang Y., Wang X. Template-Free Synthesis of Graphitic Carbon Nitride Hollow Spheres for Photocatalytic Degradation of Organic Pollutants. Mater. Lett. 2015, no. 161, pp. 197-200.
  • Zhang R., Yu Y., Wang H., Du J. Mesoporous TiO2/g-C3N4 Composites with O-Ti-N Bridge for Improved Visible-Light Photodegradation of Enrofloxacin. Sci. Total Environ. 2020, no. 724.
  • Hu C., Lei E., Hu K., Lai L., Zhao D., Zhao W., Rong H. Simple Synthesis of 3D Flower-like g-C3N4/TiO2 Composite Microspheres for Enhanced Visible-Light Photocatalytic Activity. J. Mater. Sci. 2020, no.55, pp. 151-162.
  • Dong G., Zhang Y., Pan Q., Qiu J. A Fantastic Graphitic Carbon Nitride (g-C3N4) Material: Electronic Structure, Photocatalytic and Photoelectronic Properties. J. Photochem. Photobiol. C: Photochem. Rev. 2014, no. 20, pp. 33-50.
  • Akhundi A., Habibi-Yangjeh A., Abitorabi M., Rahim Pouran S. Review on Photocatalytic Conversion of Carbon Dioxide to Value-Added Compounds and Renewable Fuels by Graphitic Carbon Nitride-Based Photocatalysts. Catal. Rev. - Sci. Eng. 2019, no. 61, pp. 595-628.
  • Kong L., Wang J., Ma F., Sun M., Quan J. Graphitic Carbon Nitride Nanostructures: Catalysis, Appl. Mater. Today, 2019, no. 16. pp. 388-424.
  • Yang J., Liang Y., Li K., Yang G., Wang K., Xu R., Xie X. One-Step Synthesis of Novel K+ and Cyano Groups Decorated Triazine-/Heptazine-Based g-C3N4 Tubular Homojunctions for Boosting Photocatalytic H2 Evolution. Appl. Catal. B: Environ. 2020, no. 262, p. 118252.
  • Yan H., Yang H. TiO2 -g-C3N4 Composite Materials for Photocatalytic H2 Evolution Under Visible Light Irradiation. J. of Alloys and Compounds. 2011, no. 509, pp. 26-29.
  • Volokh M., Peng G., Barrio J., Shalom M. Carbon Nitride Materials for Water Splitting Photoelectrochemical Cells. Angewandte Chemie - Int. Ed. 2019. no. 58, pp. 6138-6151.
  • Savateev A., Antonietti M. Heterogeneous Organocatalysis for Photoredox Chemistry. ACS Catalysis, 2018, no. 8. pp. 9790-9808.
  • Baca M., Kukulka W., Cendrowski K., Mijowska E., Kalenczuk R. J., Zielinska B. Graphitic Carbon Nitride and Titanium Dioxide Modified with 1 D and 2 D Carbon Structures for Photocatalysis. Chem. Sus. Chem. 2019, no. 12. pp. 612-620.
  • Wang Y., Phua S. Z. F., Dong G., Liu X., He B., Zhai Q., Li Y., Zheng C., Quan H., Li Z., Zhao Y. Structure Tuning of Polymeric Carbon Nitride for Solar Energy Conversion: From Nano to Molecular Scale. Chem. 2019, no. 5. pp. 2775-2813.
  • Li J., Zhang M., Li X., Li Q., Yang J. Effect of the Calcination Temperature on the Visible Light Photocatalytic Activity of Direct Contact Z-scheme g-C3N4-TiO2 Heterojunction. Appl. Catal. B: Environ. 2017, no. 212, pp. 106-114.
  • Acharya R., Parida K. A Review on TiO2/g-C3N4 Visible-Light-Responsive Photocatalysts for Sustainable Energy Generation and Environmental Remediation. J. Environ. Chem. Eng. 2020, no. 8, pp. 103896.
  • Zhang G., Li G., Lan Z. A., Lin L., Savateev A., Heil T., Zafeiratos S., Wang X., Antonietti M. Optimizing Optical Absorption, Exciton Dissociation, and Charge Transfer of a Polymeric Carbon Nitride with Ultrahigh Solar Hydrogen Production Activity. Angewandte Chemie - Int. Ed., 2017, no.56, pp.13445-13449.
  • Thomas A., Fischer A., Goettmann F., Antonietti M., Müller J.O., Schlögl R., Carlsson J.M. Graphitic Carbon Nitride Materials: Variation of Structure and Morphology and Their Use as MetalFree Catalysts. J. Mater. Chem. 2008, no. 18, pp. 4893-4908.
  • Bojdys M. J., Müller J. O., Antonietti M., Thomas A. Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride. Chem. - A Eur. J. 2008, no. 14, pp. 8177-8182.
  • Ding J., Xu W., Wan H., Yuan D., Chen C., Wang L., Guan G., Dai W.L. Nitrogen Vacancy Engineered Graphitic C3N4-Based Polymers for Photocatalytic Oxidation of Aromatic Alcohols to Aldehydes. Appl. Catal. B: Environ. 2018, no. 221, pp. 626-634.
  • Yang P., Zhuzhang H., Wang R., Lin W., Wang X. Carbon Vacancies in a Melon Polymeric Matrix Promote Photocatalytic Carbon Dioxide Conversion. Angewandte Chemie - Int. Ed. 2019, no. 58, pp. 1134-1137.
  • Zhao Y., Liu Z., Chu W., Song L., Zhang Z., Yu D., Tian Y., Xie S., Sun L. Large-Scale Synthesis of Nitrogen-Rich Carbon Nitride Microfibers by Using Graphitic Carbon Nitride as Precursor. Adv. Mater. 2008, no. 20, pp. 1777-1781.
  • Gaddam S.K., Pothu R., Boddula R. Graphitic Carbon Nitride (g-C3N4) Reinforced Polymer Nanocomposite Systems - A Review. Polym. Compos. 2020, no. 41, pp 430-442.
  • Zhang N., Wen L., Yan J., Liu Y. Dye-Sensitized Graphitic Carbon Ntride (g-C3N4) for Photocatalysis: a Brief Review. Chem. Pap. 2020, no. 74, pp. 389-406.
  • Liu G., Zhao G., Zhou W., Liu Y., Pang H., Zhang H., Hao D., Meng X., Li P., Kako T., Ye J. In Situ Bond Modulation of Graphitic Carbon Nitride to Construct p-n Homojunctions for Enhanced Photocatalytic Hydrogen Production. Adv. Funct. Mater. 2016, no. 26, pp. 6822-6829.
  • Tan H., Gu X., Kong P., Lian Z., Li B., Zheng Z. Cyano Group Modified Carbon Nitride with Enhanced Photoactivity for Selective Oxidation of Benzylamine. Appl. Catal. B: Environ. 2019, no. 242, pp.67-75.
  • Final Report on the Safety Assessment of Benzaldehyde. Int. J. Toxicol. 2006, no. 25, pp. 1127.
Еще
Статья научная