The influence of the combined propulsion system parameters on the integral dose of radiation when putting a spacecraft into a geostationary orbit

Автор: Birukov V.I., Nazarov V.P., Kurguzov A.V.

Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau

Рубрика: Авиационная и ракетно-космическая техника

Статья в выпуске: 1 т.19, 2018 года.

Бесплатный доступ

At present to transfer a spacecraft from a low earth to geostationary orbits propulsion systems of two types are most widely used: chemical and electric. Each type has its advantages and disadvantages. The application of any one of them does not always satisfy conflicting requirements. A possible solution may be the use of a combined propulsion system consisting of a chemical and electric propulsion system. This combination allows the spacecraft to be launched faster than using only electric motors, and it is more efficient in terms of the payload mass than using only a chemical propul- sion system. Electric propulsion engines (plasma or ionic) need energy sources. Usually, solar batteries are used for these purposes. The idea of using such a combined propulsion system, consisting of a solar electric propulsion sys- tem and the Fregat upper stage, was considered within the “Dvina TM” research project. The use of such a propulsion system requires, even at the design stage, to determine the parameters of the various types of engines that make up its structure. For a reasonable choice it is necessary to have information about the influence of the various propulsion system parameters on the final characteristics of the maneuver. When putting a spacecraft into orbit, it is necessary for the spacecraft to overcome Van Allen belts while the ele- ments of its design are subjected to intensive action of charged particles, which can significantly limit the period of ac- tive existence. Using a combined propulsion system, it is possible to shorten the time of being in a field of high radiation level significantly. The aim of the study was to synthesize a method for estimating the effect of the combined propulsion system parame- ters on the integral dose of radiation accumulated during the maneuver, when putting a spacecraft into a geostationary orbit. Different variations of the combined propulsion system application (thrust variations) allow to optimize the maneuver of the spacecraft and to reduce the integral dose of radiation. As a result of the work, a method was proposed to evaluate the influence of the parameters of the combined propul- sion system taking into account the passage of the Earth radiation belts, the program was implemented, calculations were made and the results were analyzed.

Еще

Ombined propulsion system, electric propulsion system, earth's radiation belt

Короткий адрес: https://sciup.org/148177801

IDR: 148177801

Список литературы The influence of the combined propulsion system parameters on the integral dose of radiation when putting a spacecraft into a geostationary orbit

  • Гильзин К. А. Электрические межпланетные корабли. 2-е изд. перераб. и доп. М.: Наука, 1970. 267 с.
  • Механика космического полета: учебник для втузов/М. С. Константинов ; под ред. В. П. Ми-шина. М.: Машиностроение, 1989. 348 с.
  • McIlwain C. E. Coordinates for Mapping the Distribution of Magnetically Trapped Particles//Jour. Geophysical Res. 1961, № 66. Pp. 3681-3691.
  • Runcorn S. K. The Magnetism of the Earth’s Body//Geophysik I: Handbuch der Physik XLVII Springer, 1956. Pp. 498-533.
  • Observation of High Intensity Radiation by Satellites 1958 Alpha and Gamma/J. A. Van Allen //Jet Propulsion. 1958, № 28. Pp. 588-592.
  • Мак Илуэйн К. Е. Координаты для отображения распределения частиц, захваченных геомагнитным полем//Операция «Морская звезда»: сб. статей/под ред. И. А. Жулина. М.: Атомиздат, 1964. С. 98-103.
  • Barth J. Applying modeling space radiation environments//IEEE Nuclear and Space Radiation Effects. Short Course. Applying Computer Simulation Tools to Radiation Effects Problems/Snowmass Conference Center. Snowmass Village, Colorado, 1997. Р. 354-367.
  • The Radiation Design Handbook/European Space Agency. Noordwijk, the Nederland: ESTEC. 1993. 444 p.
  • Fox N., Burch J. L. The Van allen probes mission. Springer, 2013. Р. 294.
  • NASA SP-3024. Models of the trapped radiation environment. Vol. I: Inner Zone/National AERONAU-TICS AND SPACE ADMINISTRATION. Washington, D.C., 1966. Р. 178.
  • Lew J. S. Drift Rate in a Dipole Field//Jour. Geophysical Res. 1961. № 66. Pp. 2681-2686.
  • Гегелев И. В., Зубарев А. И., Пудовкин О. Л. Радиационная обстановка на борту космических аппаратов//РВСН, ЦИПК. 2001. № 77. 316 с.
  • Бирюков В. И., Бирюкова М. В. Алгоритм прогнозирования радиационного воздействия на аппаратуру микроспутника.//Вестник МАИ. 2013. Т. 20, № 3. С. 40-49.
  • Методы испытаний и оценки стойкости бортовой радиоэлектронной аппаратуры космических аппаратов к воздействию электронных и протонных излучений космического пространства по дозовым эффектам: ОСТ 134-1034-2003.
  • Модель космоса. Т. 2. Воздействие космической среды на материалы и оборудование космических аппаратов. М.: МГУ НИИЯФ, 2007. С. 317.
  • Безопасность радиационная экипажа космического аппарата в космическом полете. Характеристики ядерного взаимодействия протонов: ГОСТ 25645.211-85.
  • Козлов А. А., Чумаков А. И. Алгоритм оценки конструкционной защиты космических аппаратов//Стойкость-2004: науч.-техн. сб. 2004. Вып. 7. С. 21-22.
  • Радиационная стойкость. Методы расчета: ГОСТ РВ 20.57.308-98.
Еще
Статья научная