The method of equivalent strength conditions in calculating composite structures with a regular structure using multigrid finite elements
Автор: Matveev А. D.
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Informatics, computer technology and management
Статья в выпуске: 4 vol.20, 2019 года.
Бесплатный доступ
Plates, beams and shells with non-uniform and micro-inhomogeneities regular structure are widely used in aviation and rocket and space technology. At the preliminary design stage, it is initially important to know whether the design safety factor meets the specified strength conditions. To determine the margin factor, it is necessary to solve the elasticity problem for the designed structure by the finite element method (FEM), taking into account its inhomogeneous structure, which requires large computer resources. In this paper, we propose a method of equivalent strength conditions (MESC) for calculating the static strength of elastic structures with a inhomogeneous regular structure. The proposed method is reduced to the calculation of the strength of isotropic homogeneous bodies using equivalent strength conditions. The MESC is based on the following statement. For any composite body V0 , there exists such an isotropic homogeneous body Vb and such a number p (equivalence coefficient) that if the body Vb stock coefficient satisfies 0 nb the equivalent strength conditions 0 pn1 nb pn2 , then the body V0 stock coefficient satisfies n0 the given strength conditions n1 n0 n2 , and Vice versa, n1 , n2 – given, the coefficients 0 nb , n0 , meet the exact solutions of elasticity problems constructed for bodies V0 , Vb . The method under consideration is reduced to FEM strength calculation of isotropic homogeneous bodies, which is the easiest to implement and requires less computer memory than a similar calculation of composite bodies taking into account their inhomogeneous structure. The procedure for determining the equivalence coefficients for a number of composite plates, beams and shells of rotation is described. High-precision multigrid finite elements generating discrete models of small dimension and solutions with small error are used in the construction of elastic solutions according to FEM for isotropic homogeneous bodies. The adjusted equivalent strength conditions are of the form pn1(11) nb pn2 (12 ) , where nb is the body Vb reserve coefficient and the values 1 , 2 correspond to the approximate solution constructed for the body Vb . Implementation of FEM for multigrid discrete models requires several 103-106 times less computer memory than for basic models. The calculation of the strength of a beam with a micro-homogeneous regular structure with the help of MESC is given.
Elasticity, composites, equivalent strength conditions, multigrid finite elements, plates, beams, shells.
Короткий адрес: https://sciup.org/148321703
IDR: 148321703 | DOI: 10.31772/2587-6066-2019-20-4-423-435
Список литературы The method of equivalent strength conditions in calculating composite structures with a regular structure using multigrid finite elements
- Pisarenko G. S., YAkovlev A. P., Matveev V. V. Spravochnik po soprotivleniyu materialov [Handbook of resistance materials']. Kiev, Nauk. Dumka Publ., 1975, 704 p.
- Birger I. A., SHorr B. F., Iosilevich G. B. Raschet na prochnost' detaley mashin [Calculation of the strength of machine parts]. Moscow, Mashinostroenie Publ., 1993. 640 p.
- Moskvichev V. V. Osnovy konstrukcionnoy prochnosti tekhnicheskih sistem i inzhenernyh sooruzheniy [Fundamentals of structural strength of technical systems and engineering structures]. Novosibirsk, Nauka Publ., 2002, 106 p.
- Matveev A. D. [Calculation of elastic structures using the adjusted terms of strength]. Izvestiya AltGU. Matematika i mekhanika. 2017, No. 4, P. 116–119 (In Russ.). Doi: 10.14258/izvasu(2017)4-21.
- Norri D., de Friz Zh. Vvedenie v metod konechnykh elementov [Introduction to the finite element method]. Moscow, Mir Publ., 1981, 304 p.
- Golovanov A. I., Tiuleneva O. I., Shigabutdinov A. F. Metod konechnykh elementov v statike i dinamike tonkostennykh konstruktsii [Finite element method in statics and dynamics of thin-walled constructions]. Moscow, Fizmatlit Publ., 2006, 392 p.
- Obraztsov I. F., Savel'ev L. M., Khazanov H. S. Metod konechnykh elementov v zadachakh stroitel'noi mekhaniki letatel'nykh apparatov [Finite element method in problems of aircraft structural mechanics]. Moscow, Vysshaia shkola Publ., 1985, 392 p.
- Zenkevich O. Metod konechnykh elementov v tekhnike [Finite element method in engineering]. Moscow, Mir Publ., 1975, 544 p.
- Fudzii T., Dzako M. Mekhanika razrusheniya kompozicionnyh materialov [Fracture mechanics of composite materials]. Moscow, Mir Publ., 1982.
- Matveev A. D. [The method of multigrid finite elements in the calculations of three-dimensional homogeneous and composite bodies]. Uchen. zap. Kazan. unta. Seriia: Fiz.-matem. Nauki. 2016, Vol. 158, Iss. 4, P. 530–543 (In Russ.).
- Matveev A. D. [Multigrid method for finite elements in the analysis of composite plates and beams]. Vestnik KrasGAU. 2016, No. 12, P. 93–100 (In Russ.).
- Matveev A. D. Multigrid finite element method in stress of three-dimensional elastic bodies of heterogeneous structure. IOP Conf, Ser.: Mater. Sci. Eng. 2016, Vol. 158, No. 1, Art. 012067, P. 1–9.
- Matveev A. D. [The construction of complex multigrid finite element heterogeneous and microinhomogeneities in structure]. Izvestiya AltGU. Matematika i mekhanika. 2014, No. 1/1, P. 80–83. Doi: 10.14258/izvasu(2014)1.1-18.
- Matveev A. D. [Construction of multigrid finite elements to calculate shells, plates and beams based on generating finite elements]. PNRPU Mechanics Bulletin. 2019, No. 3, P. 48–57 (In Russ.). Doi: 10/15593/perm.mech/2019.3.05.
- Samul' V. I. Osnovy teorii uprugosti i plastichnosti [Fundamentals of the theory of elasticity and plasticity]. Moscow, Vysshaia shkola Publ., 1982, 264 p.
- Matveev A. D. [Strength calculation of composite structures using equivalent strength conditions]. Vestnik KrasGAU. 2014, No. 11, P. 68–79 (In Russ.).
- Golushko S. K., Nemirovskii I. V. Priamye i obratnye zadachi mekhaniki uprugikh kompozitnykh plastin i obolochek vrashcheniia [Direct and inverse problems of mechanics of elastic composite plates and shells of rotation]. Moscow, Fizmatlit Publ., 2008, 432 p.