The method of fictitious discrete models in the calculation of bodies with an inhomogeneous regular structure

Автор: Matveev A. D.

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Informatics, computer technology and management

Статья в выпуске: 2 vol.22, 2021 года.

Бесплатный доступ

When the strength of elastic composite structures (plates, beams, shells) widely used in aviation, rocket and space technology is calculated with the finite element method (FEM), it is important to know the solu-tion error. To analyze the solution error, it is necessary to use a sequence of approximate solutions con-structed according to the FEM using the grinding procedure for basic discrete models (BMs), which take into account an inhomogeneous microheterogeneous structure of bodies within the microapproach. Dis-crete models obtained by grinding BMs have a high dimension, which makes it difficult to use the FEM for them. In addition, there are BMs of composite solids (CSs), for example, BMs of bodies with a microhet-erogeneous structure, which have such a high dimension that the implementation of the FEM for such BMs is practically impossible due to limited computer resources. To solve these problems, it is proposed to use fictitious discrete models in the calculations of CSs according to the FEM. In this paper we propose a method of fictitious discrete models (MFDM) for calculating the strength of elastic bodies with an inhomogeneous microheterogeneous regular structure. The MFDM is implemented with the help of the FEM using corrected strength conditions, which take into account the error of ap-proximate solutions. The method is based on the following provision. We believe that BMs of CSs generate solutions that slightly differ from the exact ones. Such BMs always exist for CSs due to the convergence of the FEM. The calculation of CSs according to the MFDM is reduced to the construction and calculation of the strength of fictitious discrete models (FMs), the dimensions of which are smaller than the dimension of the BMs. FMs reflect: the shape, characteristic dimensions, fastening, loading and the type of the inhomogeneous structure of CSs and the distribution of the elastic moduli corresponding to the BM of the CS. The sequence consisting of the FM converges to the BM, i.e., the limiting FM coincides with the BM. The convergence of such a sequence ensures uniform convergence of the FM stresses to the corresponding BM stresses. The implementation of the FEM for FMs with the use of multigrid finite elements leads to a large saving of computer resources, which makes it possible to use the MFDM for strength calculations of bodies with a microheterogeneous regular structure. Calculation of the CS strength according to the MFDM requires times less computer memory volume than a similar calculation using the BM of the CS, and does not contain the procedure for grinding the BM. The given example of calculating the strength of a beam with an inhomogeneous regular fibrous structure according to the MFDM shows its high efficiency. Applying the adjusted strength conditions allows using approximate solutions with larger errors in CS strength calculations, which leads to improving the efficiency of the MFDM.

Еще

Elasticity, composites, adjusted strength conditions, fictitious discrete models, multigrid finite elements.

Короткий адрес: https://sciup.org/148321802

IDR: 148321802   |   DOI: 10.31772/2712-8970-2021-22-2-244-260

Список литературы The method of fictitious discrete models in the calculation of bodies with an inhomogeneous regular structure

  • Pisarenko G. S., Yakovlev A. P., Matveev V. V. Spravochnik po soprotivleniyu materialov [Hand book of resistance materials']. Kiev, Nauk. Dumka Publ.,1975, 704 p.
  • Birger I. A., Shorr B. F., Iosilevich G. B. Raschet na prochnost’ detalej mashin [Calculation of the strength of machine parts]. Moscow, Mashinostroenie Publ.,1993, 640 p.
  • Moskvichev V. V. Osnovy konstrukcionnoy prochnosti tekhnicheskih sistem i inzhenernyh sooruzheniy [Fundamentals of structural strength of technical systems and engineering structures]. Novosibirsk, Nauka Publ., 2002, 106 p.
  • Matveev A. D. [Calculation of elastic structures using the adjusted terms of strength]. Izvestiya AltGU. 2017, No. 4,P. 116–119 (In Russ.).Doi: 10.14258/izvasu (2017)4-21.
  • Zienkiewicz O. C., Taylor R. L., Zhu J. Z. The finite element method: its basis and fundamentals. Oxford: Elsevier Butterworth-Heinemann, 2013, 715 p.
  • Golovanov A. I., Tiuleneva O. I., Shigabutdinov A. F. Metod konechnykh elementov v statike i dinamike tonkostennykh konstruktsii [Finite element method in statics and dynamics of thin-walled structures]. Moscow, Fizmatlit Publ., 2006, 392 p.
  • Bate K., Vilson E. Chislennye metody analiza i metod konechnykh elementov [Numerical analysis methods and finite element method]. Moscow, Stroiizdat Publ., 1982, 448 p.
  • Obraztsov I. F., Savel’ev L. M., Khazanov Kh. S. Metod konechnykh elementov v zadachakh stroitel’noi mekhaniki letatel’nykh apparatov [Finite element method in problems of aircraft structural mechanics]. Moscow, Vysshaia shkola Publ., 1985, 392 p.
  • SekulovichM. Metodkonechnykhelementov [Finiteelementmethod]. Moscow, Stroiizdat Publ., 1993, 664 p.
  • Norri D., de Friz Zh. Vvedenie v metod konechnykh elementov [Introduction to the finite ele-ment method]. Moscow, Mir Publ., 1981, 304 p.
  • Zenkevich O. Metod konechnykh elementov v tekhnike [Finite element method in engineering]. Moscow, Mir Publ., 1975, 544 p.
  • Fudzii T., Dzako M. Mekhanika razrusheniya kompozicionnyh materialov[Fracture mechanics of composite materials].Moscow, Mir Publ., 1982, 232 p.
  • Matveev A. D.[The method of multigrid finite elements in the calculations of three-dimensional homogeneous and composite bodies]. Uchen. zap. Kazan. un-ta. Seriia: Fiz.-matem. Nauki.2016, Vol. 158, Iss. 4, P. 530–543 (In Russ.).
  • Matveev A. D.[Multigrid method for finite elements in the analysis of composite plates and beams].Vestnik KrasGAU.2016, No. 12, P. 93–100 (In Russ.).
  • Matveev A. D. Multigrid finite element method in stress of three-dimensional elastic bodies of heterogeneous structure. IOP Conf, Ser.: Mater. Sci. Eng. 2016, Vol. 158, No. 1, Art. 012067, P. 1–9.
  • Matveev A. D. [Multigrid finite element Method in the calculations of composite plates and beams of irregular shape]. The Bulletin of KrasGAU. 2017, No. 11, P. 131–140 (In Russ.).
  • Matveev A. D. [Multigrid finite element Method]. The Bulletin of KrasGAU. 2018, No. 2, P. 90–103 (In Russ.).
  • Matveev A. D. [The method of. multigrid finite elements of the composite rotational and bi-curved shell calculations]. The Bulletin of KrasGAU.2018, No. 3, P. 126–137 (In Russ.).
  • Matveev A. D. [Method of. multigrid finite elements to solve physical boundary value problems]. Information technologies and mathematical modeling.Krasnoyarsk, 2017. P. 27–60.
  • Rabotnov Y. N. [Mechanics of a deformed solid]. Moscow, Nauka Publ., 1988, 711 p.
  • Demidov S. P. Teoriya uprugosti [Theory of elasticity]. Moscow, Vysshaya shkola Publ., 1979. 432 p.
  • Timoshenko S. P., Dzh. Gud’er. Teoriya uprugosti [Theory of elasticity]. Moscow, Nauka Publ., 1979, 560 p.
  • Bezuhov N. I. Osnovy teorii uprugosti, plastichnosti i polzuchesti [Fundamentals of the theory of elasticity, plasticity and creep]. Moscow, Vysshaya shkola Publ., 1968, 512 p.
  • Matveev A. D. [Some approaches of designing elastic multigrid finite elements]. VINITI Proceedings.2000, № 2990-B00, P. 30 (In Russ.).
  • Matveev A. D. [Mixed discrete models in the analysis of elastic three-dimensional inhomogeneous bodies of complex shape]. Vestnik PNIPU. Mekhanika. 2013, No. 1, P. 182–195 (In Russ.).
  • Matveev A. D.[Multigridmodelingof composites of irregular structure with a small filling ratio]. J. Appl. Mech. Tech. Phys.2004, No. 3, P. 161–171 (In Russ.).
  • Matveev A. D.[The construction of complex multigrid finite element heterogeneous and micro-inhomogeneities in structure].Izvestiya AltGU.2014. № 1/1, P. 80–83. Doi: 10.14258/izvasu(2014)1.1-18.
  • Matveev A. D.[Method of generating finite elements].The Bulletin of KrasGAU. 2018, No. 6, P. 141–154(In Russ.).
  • Matveev A. D.[Construction of multigrid finite elements to calculate shells, plates and beams based on generating finite elements].PNRPU Mechanics Bulletin. 2019, No. 3, P. 48–57 (In Russ.). Doi: 10/15593/perm.mech/2019.3.05.
  • Golushko S. K., Nemirovskij Y. V. Pryamye i obratnye zadachi mekhaniki uprugih compozitnyh plastin i obolochek vrashcheniya [Direct and inverse problems of mechanics of elastic composite plates and shells of rotation]. Moscow, Fizmatlit Publ., 2008, 432 p.
  • Nemirovskij Y. V., Reznikov B. S. Prochnost’ elementov konstrukciy iz kompozitnyh materiallov [Strength of structural elements made of composite materials]. Novosibirsk, Nauka Publ., 1984, 164 p.
  • Kravchuk A. S., Majboroda V. P., Urzhumcev Y. S. Mekhanika polimernyh i kompozicionnyh materialov [Mechanics of polymer and composite materials]. Moscow, Nauka Publ., 1985, 201 p.
  • Alfutov N. A., Zinov’ev A. A., Popov B. G. Raschet mnogosloynyh plastin i obolochek iz kompozicionnyh materialov [Calculation of multilayer plates and shells made of composite materials]. Moscow, Mashinostroenie Publ., 1984, 264 p.
  • Pobedrya B. E. Mekhanika kompozicionnyh materialov [Mechanics of composite materials]. Moscow, MGU Publ., 1984, 336 p.
  • Andreev A. N., Nemirovskij Y. V. Mnogosloynye anizotropnye obolochki i plastiny. Izgib, ustojchivost’, kolebaniya [Multilayer anisotropic shells and plates. Bending, stability, vibration]. Novosibirsk, Nauka Publ., 2001, 288 p.
  • Vanin G. A. Mikromekhanika kompozicionnyh materialov [Micromechanics of composite materials]. Kiev, Naukova dumka Publ., 1985, 302 p.
  • Vasil’ev V. V. Mekhanika konstrukciy iz kompozicionnyh materialov [Mechanics of structures made of composite materials]. Moscow, Mashinostroenie Publ., 1988, 269 p.
  • Samul’ V. I.Osnovy teorii uprugosti i plastichnosti [Fundamentals of the theory of elasticity and plasticity]. Moscow, Vysshaia shkola Publ., 1982, 264 p.
Еще
Статья научная