The method of Haar sums for numerical solution of Poisson kinematic equations system determining an evolution of a spacecraft position

Автор: K.A. Kirillov, E.V. Ovchinnikova, K.V. Safonov, G.P. Titov, A.I. Khokhlov, A.A. Gashin

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Informatics, computer technology and management

Статья в выпуске: 3 vol.24, 2023 года.

Бесплатный доступ

The paper proposes the method for the numerical solution of Poisson kinematic equations system determining the evolution of the spacecraft position. The system of Poisson kinematic equations is used to designate the transition matrix from the coordinate system associated with the spacecraft at the selected time t1 to the coordinate system associated with the spacecraft at the current time t2. This matrix is used in the process of solving problems of determining a three-axis orientation of the spacecraft from the readings of the magnetometer using information about its angular velocities. The proposed method is based on replacing the derivatives of the desired functions in the Poisson kinematic equations by partial sums of series in the scaled Haar system. The partial sums of these series are generalized polynomials in the scaled Haar system. Hence, these sums are step (piecewise constant) functions. The estimates of the proposed method error are derived, which reveal that in the case of the coefficients of the equations which are functions matching the Lipschitz condition, the absolute error in calculating each of the elements of the transition matrix from one coordinate system to another is the value O(N–1) at N  , where N is the number of partitions of the segment [t1, t2] when constructing a grid of nodes involved in this method. It is proved that the complexity of constructing an algorithm for approximating the system of Poisson kinematic properties insignificantly exceeds the complexity of solving this system by Euler method, which has the first order of accuracy. The research presents the results of numerical experiments, showing that in certain cases the Haar sums method gives an error that is much smaller than the Euler method, and is almost identical to the errors of the Euler – Cauchy and Runge – Kutta methods of the 2nd order, the complexity of which is approximately two times greater than the complexity of the Haar sums method.

Еще

Spacecraft three-axis orientation, the coordinate system associated with the spacecraft, system of Poisson kinematic equations, system of Haar functions

Короткий адрес: https://sciup.org/148329691

IDR: 148329691   |   DOI: 10.31772/2712-8970-2023-24-3-450-467

Список литературы The method of Haar sums for numerical solution of Poisson kinematic equations system determining an evolution of a spacecraft position

  • Nuzhdin A. N., Titov G. P., Omel'nichenko V. B. and others. Sposob opredeleniya trekhosnoy orientatsii kosmicheskogo apparata [Method of determining three-axis orientation of spacecraft]. Patent RF, no 2691536, 2019.
  • Appel' P. Teoreticheskaya mekhanika. Tom 2: Dinamika sistemy. Analiticheskaya mekhanika [Theoretical mechanics. Vol. 2: System dynamics. Analytical mechanics]. Moscow, Fizmatgiz Publ., 1960, 487 p.
  • Baryshev V. A., Krylov G. N. Kontrol' orientatsii meteorologicheskikh sputnikov [Orientation control of meteorological satellites]. Leningrad, Gidrometeoizdat Publ., 1968, 210 p.
  • Golovan A. A., Parusnikov N. A. Matematicheskie osnovy navigatsionnykh sistem. Chast' 1: Matematicheskie modeli inertsial'noy navigatsii [Mathematical foundations of navigation systems. Part 1: Mathematical models of inertial navigation]. Moscow, MAKS Press Publ., 2011, 136 p.
  • Kert B. E., Andreeva Zh. N., Agoshkov O. G. Kinematika (s dopolnitel'nymi glavami) [Kinematics (with additional chapters)]. St.Petersburg, Baltic St. Tech. Univ. Publ., 2014, 222 p.
  • Fomichev A. V. Kinematika tochki i tverdogo tela [Kinematics of a point and a rigid body]. Moscow, Moscow Inst. of Physics and Technology Publ., 2021, 128 p.
  • Bogdanov O. N. Metodika soglasovannogo modelirovaniya izmereniy inertsial'nykh datchikov, traektornykh parametrov ob"ekta s prilozheniem k zadacham inertsial'noy i sputnikovoy navigatsii. Dis. kand. fiz.-mat. nauk. [Method of coordinated modeling of measurements of inertial sensors, trajectory parameters of an object with application to problems of inertial and satellite navigation. Cand. sci. (phys. and math.) diss.]. Moscow, Moscow St. Univ. Publ., 2015, 142 p.
  • Bogdanov O. N., Korosteleva S. S. Kukhtevich S. E., Fomichev A. V. [On the choice of algorithm and clock frequency for calculating the orientation matrix for a strapdown inertial navigation system]. Trudy MIEA. 2010, Iss. 2, P. 60–67 (In Russ.).
  • Dzhepe A. Zadacha navigatsii i orientatsii iskusstvennogo sputnika Zemli na osnove datchikov uglovoy skorosti i mnogoantennogo sputnikovogo priemnika. Dis. kand. fiz.-mat. nauk. [The problem of navigation and orientation of an artificial Earth satellite based on angular velocity sensors and a multi-antenna satellite receiver. Cand. sci. (phys. and math.) diss.]. Moscow, Moscow St. Univ. Publ., 2016, 94 p.
  • Mashtakov Ya. V. Ispol'zovanie pryamogo metoda Lyapunova v zadachakh upravleniya orientatsiey kosmicheskikh apparatov. Dis. kand. fiz.-mat. nauk [Use of the direct Lyapunov method in problems of spacecraft attitude control. Cand. sci. (phys. and math.) diss.]. Moscow, Keldysh Inst. Of Applied Mathematics Publ., 2019, 94 p.
  • Savage P. G. Strapdown inertial navigation integration algorithm design. Part 1: attitude algorithms. Journal of Guidance, Control, and Dynamics. 1998, Vol. 21, No. 1, P. 19–28.
  • Lukomskiy D. S., Lukomskiy S. F., Terekhin P. A. [Solution of Cauchy Problem for Equation First Order Via Haar Functions]. Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika. 2016, Vol. 16, Iss. 2, P. 151–159 (In Russ.).
  • Sobol' I. M. Mnogomernye kvadraturnye formuly i funktsii Khaara [Multidimensional quadrature formulas and Haar functions]. Moscow, Nauka Publ., 1969, 288 p.
  • Petrov I. B., Lobanov A. I. Lekcii po vychislitel'noy matematike [Lectures on computational mathematics]. Moscow, Internet-Universitet Informacionnyh Tehnologiy Publ., 2006, 523 p.
  • Panteleev A. V., Yakimova A. S., Rybakov K. A. Obyknovennye differencial'nye uravneniya. Praktikum [Ordinary differential equations. Practical work]. Moscow, Infra-M Publ., 2016, 432 p.
  • Arushanyan O. B., Zaletkin S. F. Reshenie sistem obyknovennyh differencial'nyh uravneniy metodami Runge – Kutta [Solving of ordinary differential equations systems by Runge–Kutta methods]. Moscow, Research Computing Center of Moscow St. Univ. Publ., 2014, 58 p.
Еще
Статья научная