The microstructure organization and functional peculiarities of Euphorbia paralias L. and Polygonum maritimum L. - halophytic plants from dunes of Pomorie lake (Bulgaria)
Автор: Kosakivska I.V., Babenko L.M., Shcherbatiuk M.M., Vedenicheva N.P., Sheyko O.A., Ivanova A.P., Angelova L.E., Maslenkova L.T.
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 2 т.13, 2017 года.
Бесплатный доступ
The aim of this research was to investigate the leaf surface microstructure, pigments spectrum, hormones status and lipids composition of halophytes Polygonum maritimum L. and Euphorbia paralias L. that grow under natural conditions on the dunes of Pomorie Lake, (Bulgaria). It was shown that the existence in saline and dry soils provided among others adaptive mechanisms by specific microstructure of leaf. The adaxial and abaxial surfaces of P. maritimum leaves are covered with a dense layer of cuticle wax, stomata are located on the leaf both sides below the cuticle level. In E. paralias the cuticle is also well developed on the adaxial surface of leaf laminas. The epidermis of the leaf lower side is covered with a less dense cuticle layer formed by large wax crystals. This plant has stoma pores only on the abaxial side of small leaves below the cuticle level and they are surrounded with hump-shaped cuticle constructions. A high amount of carotenoids (as compared with that of chlorophylls) in P. maritimum leaves indicates that these pigments have a light-collecting function and could transfer an additional energy to chlorophylls. The high performance liquid chromatography method has been used to provide a qualitative and quantitative analysis of hormones. It was shown that in leaves of E. paralias and P. maritimum free abscisic (ABA) and conjugated indole-3-acetic (IAA) acids prevailed. A high level of active ABA is correlated with the salt tolerance and ability to survive and grow in stress conditions. A high level of conjugated form of IAA demonstrated that activity of this hormone is limited. The cytokinins qualitative and quantitative analyses demonstrated that in E. paralias leaves zeatin forms dominated, and the level of inactive cytokinins ( cis -zeatin and zeatin-O-glucoside) was much higher than that of active ones ( trans -zeatin and zeatin riboside). P. maritinum leaves contained a significant quantity of isopentenyl forms - isopentenyladenine and isopentenyladenosine, and among zeatin forms, zeatin-O-glucoside prevailed. Studies on the fatty acids content showed that in halophytes the salt resistance mechanism is based on the regulation of plasmatic membrane transport function that involves non-saturated fatty acids. The presence of a large amount of saturated fatty acids provides a decrease of membrane permeability and better resistance against soil salinity.
Euphorbia paralias l, polygonum maritimum l, microstructure, phytohormones, pigments, lipids
Короткий адрес: https://sciup.org/14323949
IDR: 14323949
Список литературы The microstructure organization and functional peculiarities of Euphorbia paralias L. and Polygonum maritimum L. - halophytic plants from dunes of Pomorie lake (Bulgaria)
- Akhiyarova G.R., Sabirzhanova I.B., Veselov D.S., Frike V. (2005) The Participation of hormones in the resumption of the growth of wheat shoots at short-term salinity NaCl. Fiziologiya rasteniy, 52, 891-896. (In Russian)
- Albacete A., Cantero-Navarro E., Balibrea M.E., Grosskinsky D.K., Gonzalez M.C., Martinez-Andujar C., Smigocki A.C., Roitsch T., Perez-Alfocea F. (2014) Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity. J. Exp. Bot., 65, 6081-6095
- Albacete A., Ghanem M.E., Dodd I.C., Pérez-Alfocea F. (2010) Principal component analysis of hormone profiling data suggests an important role for cytokinins in regulating senescence of salinised tomato. Plant Signaling and Behavior, 5, 44-46
- Allakhverdiev S.I., Hishiyama Y., Suzuki I. (1999) Genetic engineering of the unsaturation of fatty acid in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc. Natl. Acad. Sci. USA, 96, 5862-5867
- Andrianova Y.E., Tarchevsky I.A.(2000) Chlorophyll and plant productivity. Moscow: Science, 135.
- Atanasova L., Pissurska M., Stoyanov I. (1996) Cytokinins and growth responses of maize and pea plants to salt stress. Bulg. J. Plant Physiol., 22, 2231
- Azachi M., Sadka A., Fisher M. (2002) Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiol., 129, 1320-1329
- Babenko L.M., Kosakivska I.V., Akimov Yu.A., Klymchuk D.O., Skaternya T.D. (2014) Effect of temperature stresses on pigment сontent, lipoxygenase activity and cell ultrastructure of winter wheat seedlings. Genetics and Plant Physiology, 4 (1-2), 117-125
- Bailey S., Horton P., Walters R.G. (2004) Acclimation of Arabidopsis thaliana to the light environment: the relationship between photosynthetic function and chloroplast composition. Planta, 218, 793-802
- Bajguz A., Piotrowska A. (2009) Conjugates of auxin and cytokinin. Phytochemistry, 70, 957-969
- Ben Salah I., Albacete A., Messedi D., Gandour M., Martínez Andújar C., Zribi K., Martínez V., Abdelly C., Pérez-Alfocea F. (2013) Hormonal responses of nodulated Medicago ciliaris lines differing in salt tolerance. Environ. Exp. Bot., 86, P. 35-43
- Blankenship R.E. (2002) Molecular mechanisms of photosynthesis. Oxford: Blackwell Science Ltd, UK. 321 p
- Cherniad'ev I.I. (2009) The protective action of cytokinins on the photosynthetic machinery and productivity of plants under stress. Applied Biochemical Microbiology, 45, 351-362
- Christie W.W. (1989) Gas Chromatography and Lipids: a Practical Guide. The Oily Press, Ayr, Scotland. 184 p
- Cuttriss A.J., Pogson B.J. (2004) Carotenoids. Plant pigments and their manipulation. Ed. Davies K.M. Boca Raton: CRC Press, 57-91
- Del Pozo J.C., Lopez Mataz M.A., Ramirez-Parra E., Gutierrez C. (2005) Hormonal control of the plant cell cycle. Physiol. Plant., 123, 173-183
- Evert R.F. (2007) Esau's plant anatomy. Third edition. -Hoboken, New Jersey.: Wiley Interscience,. -607 p
- Raven P.H., Evert R.F., Eichhorn S.E. (2013) Raven Biology of Plants. Eighth edition. New York.: W.H. Freeman and Co. Publishers,. -880 p
- Fricke W., Akhiyarova G., Veselov D., Kudoyarova G. (2004) Rapid and tissue-specific changes in ABA and in growth rate response to salinity in barley leaves. J. Exp. Bot., 55, 1115-1123
- Ghanem M.E., Albacete A., Smigocki A.C. (2011) Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. J. Exp. Bot., 62, 125-140
- Glenn E.P., Brown J.J. (1999) Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci., 18, 227-255
- Hassine A.B., Ghanem M.E., Bouzid S., Lutts S. (2009) Abscisic acid has contrasting effects on salt excretion and polyamine concentrations of an inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus. Ann. Bot., 104, 925-936
- Henkel P.A. (1982) Physiology of heat-and drought resistance. M.: Nauka, 280 p.
- Ivanova A., Khozin-Goldberg I., Kamenarska Z., Nechev J., Cohen Z., Popov S., Stefanov K. (2003) Lipophylic Compounds from Euphorbia peplis L. -a halophytic plant from the Bulgarian Black Sea Coast. Z. Naturforsch., 58, 783-788
- Ivanova A., Nechev J., Stefanov K. (2000) Lipid composition of some halophyte plants from the Black Sea coast of Bulgaria. Compt. rend. Acad. Bulg. Sci., 53, 83-86
- Ivanova A.P., Tsonev T.D., Peeva V.N., Najdenski H.M., Tsvetkova I.V., Babenko L.M., Shcherbatiuk M.M., Sheiko O.A. Kosakivska I.V. (2015) Euhalophyte Eryngium maritimum L.: the Microstructure and Functional Characteristics. J. Stress Physiol. Biochem., 11(3), 52-61
- Javid M.G., Soroosshzadeh A., Moradi F., Sanavy S.A.M.M., Allahdadi I. (2011) The role of phytohormones in alleviating salt stress in crop plants. Australian J. Crop Plants, 5, 726-734
- Jennings H. (1968) Halophytes, succulence and sodium in plants -a unified theory. New Phytol., 67, 899-911
- Khadri M., Tejera N.A., Lluch C. (2006) Alleviation of salt stress in common bean (Phaseolus vulgaris) by exogenous abscisic acid supply. J. Plant Growth Regul., 25, 110119
- Kličová Š., Šebánek J., Hudeová M., Vitková H., Vlašinová H. (2002) The effect of fluridone and flurochloridone on the incidence of albinism in pea (Pisum sativum) and on the abscission of leaves of privet (Ligustrum vulgare). Rostlinna Vyroba, 48, 255-260
- Kochubey S.M., Bondarenko O.Yu., Shevchenko V.V. (2014) Photosynthesis. V 1. Structural organization and functional features of the light phase of photosynthesis. -K.: Logos, 384 p. (In Russian)
- Kosakivska I.V., Voytenko L.V., Likhnyovskiy R.V., Ustinova A.Y. (2014) Effect of temperature on accumulation of abscisic acid and indole-3-acetic acid in Triticum aestivum L. seedlings. Genetics and Plant Physiology, 4 (3-4), 201-208
- Kumari A., Das P., Pradeep K. (2015) Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes, Front. Plant Sci., 6, 1-20
- Kusnetsov Vl.V., Kruglova A.G., Molodyuk O.I., Karyagin V.V., Meshcheryakov A.B., Ragulin V.V., Rakitin V.Yu., Kholodova V.P. (2003) Hormonal regulation of Crassulacean Acid Metabolism (CAM) and inter-organ stress signal transduction. Phytohormones in Plant Biotechnology and Agriculture. Eds. Macháčková I., Romanov G.A. Dordrecht: Kluwer, 195-203
- Li X.-J., Yang M.-F., Chen H., Qu L.-Q., Chen F., Shen S.-H. (2010) Abscisic acid pretreatment enhances salt tolerance of rice seedlings: proteomic evidence. Biochim. Biophys. Acta, 1804, 929-940
- Lichtenthaler H.K., Buschmann C. (2001) Chlorophylls and Carotenoids: Measurement and Characterization by UVVIS Spectroscopy. Current Protocols in Food Analytical Chemistry, F4.3.1-F4.3.8
- Lichtenthaller H.K. (1987) Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in enzymology, 148, 350-382
- Lokhande V.H., Suprasan M.P. (2012) Prospects of Halophytes in Understanding and Managing Abiotic Stress Tolerance. Environmental adaptations and Stress Tolerance of Plants in the Era of Climate Change/eds. P. Ahmad, M.N.V. Prasad. Springer science. Business Media, 29-56
- Mansour M.M.F., Salama K.H.A., Al-Mutawa M.M. (2002) Effects of NaCl and polyamines on plasma membrane lipids of wheat roots. Biol. Plant, 45, 235-239
- Munns R., James R.A., Luchli A. (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot., 57, 1025-1043
- Musatenko L., Vedenicheva N., Vasyuk V., Generalova V., Martyn G., Sytnik K. (2003) Phytohormones in seedlings of maize hybrids differing in their tolerance to high temperatures. Russian J. Plant Physiology, 50, 499-504
- Nejad A.R., van Meeteren U. (2007) The role of abscisic acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative air humidity. J. Exp. Bot., 58 (3), 627-636
- Orhan F. (2016) Alleviation of salt stress by halotolerant and halophilic growth-promoting bacteria in wheat (Triticum aestivum). Brazilian J. Microbiol., 47, 621-627
- Osakabe Y., Yamaguchi-Shinozaki K., Shinozaki K., Tran L.S. (2014) ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytologist., 202, 35-49
- Ozfidan C., Turkan I., Sekmen A.H., Seckin B. (2013) Time course analysis of ABA and non-ionic osmotic stress-induced changes in water status, chlorophyll fluorescence and osmotic adjustment in Arabidopsis thaliana wild-type (Columbia) and ABA-deficient mutant (aba2). Environ. Exp. Bot., 86, 44-51
- Perez-Alfocea F., Albacete A., Ghanem M., Dodd I.C. (2010) Hormonal regulation of source-sink relations to maintain crop productivity under salinity: a case study of root-to-shoot signalling in tomato. Functional Plant Biol., 37, 592-603
- Piotrowska A., Bajguz A. (2011) Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins and jasmonates. Phytochenistry, 72, 2097-2112
- Rodriguez-Rosales M.P., Kerbek L., Bueno P. (1999) Changes induced by NaCl in lipid content and composition, lipoxygenase, plasma membrane H+-ATPase and antioxidant enzyme activities of tomato (Lycopersicon esculentum. Mill) calli. Plant Sci, 143, 143-150
- Rozentsvet О.А., Nesterov V.N, Bogdanova Е.S. (2013) The structurally functional characteristic of the photosynthetic device of halophytes, differing by salts accumulation. Izvestiya Samarskogo nauchnogo tsentra РАН, 15, 2189-2195
- Shevyakova N.I., Musatenko L.I., Stetsenko L.A., Rakitin V.Yu., Vedenicheva N.P., Voytenko L.V., Kuznetsov Vl.V. (2010) The effect of salinity on growth performance Phaseolus vulgaris L. plants, phytohormones content and polyamines. Fiziologiya i biokhimiya kulturnykh. rasteniy, 42, 483-490
- Shevyakova N.I., Musatenko L.I., Stetsenko L.A., Vedenicheva N.P., Rakitin V.Yu., Kuznetsov Vl.V. (2013) Effect of ABA on the contents of proline, polyamines, and cytokinins in the common ice plants under salt stress. Russ. J. Plant Physiol, 60, 741-748
- Smolikova G.N., Medvedev S.S. (2015). SEED CAROTENOIDS: SYNTHESIS, DIVERSITY, AND FUNCTIONS. RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 62, 1-13. (In Russian)
- Stetsenko L.A., Vedenicheva N.P., Likhnevsky R. V., Kuznetsov Vl.V. (2015) Influence of abscisic acid and fluridone on the content of phytohormones and polyamines and the level of oxidative stress in plants of Mesembryanthemum crystallinum L. under salinity. Biology Bulletin, 42, 98-107
- Stumskaya M., Wurtzela E. (2013) The carotenoid biosynthetic pathway: thinking in all dimensions. Plant Sci., 208, 182-193
- Talla S.K., Panigrahy M., Kappara S., Nirosha P., Neelamraju S. (2016) Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes. J. Exp. Bot., 67, 1839-1851
- Vedenecheva N.P., Voytenko L.V., Musatenko L.I., Stetsenko L.A., Shevyakova N.I. (2010) Solification effects on the phytohormone content in leaves Mesembryanthenum crystallinum L. The Bull. Kharkiv Natl. Agr. Univ., 3 (21), 30-36.
- Vedenicheva N.P. (2016) Cytokinins as a regulators of plant organs growth under different conditions. The Bulletin of Kharkiv National Agrarian University. Ser. Biology. 1 (37), 6-26. (In Ukrainian)
- Vedenicheva N.P., Voytenko L.V., Musatenko L.I., Stetsenko L.A., Shevyakova N.I. (2010) Effect of salinity on plant hormones content in the leaves of Mesembryanthemum crystallinum L. The Bulletin of Kharkiv National Agrarian University, 3, 30-36
- Vedenicheva N.P., Voytenko L.V., Musatenko L.I., Stetsenko L.A., Shevyakova N.I. (2011) Changes of phytohormones content in halo-and glycophytes under salinity. Studia Biologica, 5, 37-44
- Veselov D.S., Veselov S.Yu., Vysotskaya L.B, Kudoyarova G.R., Farkhutdinov R.G. (2007) Plant hormones: regulation of the concentration, the relationship with growth and water exchange. Science, Moscow. 356 p
- Vinocur B., Altman A. (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitation. Current Opinion in Biotechnology, 16, 123-132
- Wada H., Murata N. (2009) Lipids in Thylakoid membranes and Photosynthetic Cells. In: Wada H., Murata N. (eds.), Lipids in Photosynthesis: Essential and Regulatory Function. N. Dordrecht: Springer,. P. 1-9
- Wang Y., Shen W., Chan Z., Wu Y. (2015) Endogenous cytokinin overproduction modulates ROS homeostasis and decrease salt stress resistance in Arabidopsis thaliana. Front Plant Sci., 6, 1004-1023
- Wellburn A. (1994) The spectral determination of chlorophyll a and chlorophyll b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol., 144, 307-313
- Xiong L. Abscisic acid in plant response and adaptation to drought and salt stress//Advances in molecular breeding toward drought and salt tolerant crops. Eds. M.A. Jenks, P.M. Hasegawa, S.M. Jain. -Berlin: Springer, 2007. -P. 193-221
- Yongyin W., Mopper S., Hasenstein K.H. (2001) Effects of salinity on endogenous ABA, IAA, JA and SA in Iris hexagona. J. Chem. Ecol., 27, 327-342
- Zwack P.J., Rashotte A.M. (2015) Interaction between cytokinin signalling and abiotic stress responses. J. Exp. Bot., 66, 4863-4871