The potential of using SWCNTS, MWCNTS and CNFS capable of increasing the composite material dimensional and technological stability as modifiers of a polymer matrix
Автор: Obvertkin I.V., Pasechnik K.A., Vlasov A.Y.
Статья в выпуске: 4, 2021 года.
Бесплатный доступ
In this study, the effect of carbon nanofibers (CNN), single-wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs) on the warpage expected value and warpage dispersion of a plate made of a fibrous composite material are investigated. Laminates with fiber disorientation were considered as asymmetric and the model proposed by Dano and Hyer was used to evaluate the warpage. The results obtained confirm that the addition of carbon nanoparticles as a modifier to the polymer matrix of a fibrous composite material can increase the dimensional stability (the mathematical expectation of the standard deviation) and the technological stability of the reinforcement scheme (the variance of the standard deviation of the composite plate). Modeling of the warpage of plate, taking into account the possible disorientation of the fiber, showed a decrease in the warpage dispersion by 12.6 and 26.6 % with the modification of the SWNTs and MWCNTs, respectively. The coefficient of thermal extension (CTE) of a nanostructured polymer matrix with various fillers were experimentally determined. It was found that carbon nanomodifiers are more effective as compensators for the thermal expansion of the polymer matrix in composite laminates reinforced with carbon fibers than the polymer matrix without macrofibers. The addition of 0.05 % SWCNTs, 1 % MWCNTs to the epoxy resin reduces the CTE by 9.7 and 15.4 %, respectively. At the same time, the addition of a similar amount of nanoparticles to the epoxy matrix of the fiber composite reduces the CTE in the transverse direction by 15.56 and 35.8 %, respectively. On the basis of the obtained results, the dependences of the transverse CTE of the polymer composite material, the mathematical expectation of the standard deviation, and the variance of the standard deviation of the composite plate form accuracy on the concentration of the modifier were constructed. According to the obtained data, it can be concluded that in order to reduce the mathematical expectation and the variance of the warping of the composite material, there is an effective concentration, the increase of which is impractical, despite the further decrease in the transversal CTE.
Nanocomposites, carbon nanotubes and nanofibers, thermomechanical characteristics, analytical modeling, thermal analysis
Короткий адрес: https://sciup.org/146282387
IDR: 146282387 | DOI: 10.15593/perm.mech/2021.4.10
Список литературы The potential of using SWCNTS, MWCNTS and CNFS capable of increasing the composite material dimensional and technological stability as modifiers of a polymer matrix
- Shokrieh M.M., Daneshvar A., Akbari S., Chitsazzadeh M. The use of carbon nanofibers for thermal residual stress reduction in carbon fiber/epoxy laminated composites. Carbon N Y, 2013, no. 59, pp. 255-263. https://doi.org/10.1016/j. carbon.2013.03.016.
- Ghasemi A.R., Mohammadi M.M., Mohandes M. The role of carbon nanofibers on thermo-mechanical properties of polymer matrix composites and their effect on reduction of residual stresses.Compos Part B Eng, 2015, no. 77, pp. 519-27. https://doi.org/10.1016/j.compositesb.2015.03.065.
- Krause B., Pötschke P., Ilin E., Predtechenskiy M. Melt mixed SWCNT-polypropylene composites with very low electrical percolation. Polymer, 2016, no. 98, pp. 45-50. https://doi.org/10.1016/j.polymer.2016.06.004.
- Clancy A.J., White E.R., Tay H.H., Yau H.C., Shaffer MS.P. Systematic comparison of conventional and reductive single-walled carbon nanotube purifications. Carbon N Y, 2016, no. 108, pp. 423-432. https://doi.org/10.1016/j.carbon.2016.07.034.
- OCSiAl. TUBALL Technical Info https://tuball.com/en/about-tuball
- Chung DDL. Carbon Fibers, Nanofibers, and Nanotubes. Carbon Compos, 2017, no. 1 (87). https://doi.org/10.1016/b978-0-12-804459-9.00001-4
- Li F., Cheng H.M., Bai S., Su G., Dresselhaus M.S. Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. ApplPhysLett, 2000, no. 77, pp. 3161-3163. https://doi.org/10.1063/1.1324984.
- Demczyk B.G., Wang Y.M., Cumings J., Hetman M., Han W., Zettl A., et al. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, Mater SciEng A, 2002, no. 334, pp. 173-178. https://doi.org/10.1016/S0921-5093 (01) 01807-X.
- Spitalsky Z., Tasis D., Papagelis K., Galiotis C. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. ProgPolymSci, 2010, no. 35, pp. 357-401. https://doi.org/10.1016/j.progpolymsci.2009.09.003.
- Shirasu K., Nakamura A., Yamamoto G., Ogasawara T., Shimamura Y., Inoue Y., et al. Potential use of CNTs for production of zero thermal expansion coefficient composite materials: An experimental evaluation of axial thermal expansion coefficient of CNTs using a combination of thermal expansion and uniaxial tensile tests.Compos Part A ApplSciManuf, 2017, no. 95, pp. 152-160. https://doi.org/10.1016/j.compositesa.2016.12.027.
- Ruoff R.S., Lorents D.C. Mechanical and thermal properties of carbon nanotubes. Carbon 1995, no. 33, pp. 925-930. https://doi.org/10.1016/0008-6223 (95) 00021-5.
- Singh N.P., Gupta V.K., Singh A.P. Graphene and carbon nanotube reinforced epoxy nanocomposites: A review. Polymer (Guildf), 2019, no. 180. https://doi.org/10.1016/j.polymer.2019.121724.
- Shokrieh M.M., Daneshvar A., Akbari S. Reduction of thermal residual stresses of laminated polymer composites by addition of carbon nanotubes, 2014, no. 53, pp. 209-216. https://doi.org/10.1016/j.matdes.2013.07.007.
- Polymer nanocomposites. MRS Bull, 2007, no. 32, рр. 314-319. https://doi.org/10.1557/mrs2007.229.
- Xie X.L., Mai Y.W., Zhou X.P. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater SciEng R Reports, 2005, no. 49, pp. 89-112. https://doi.org/10.1016/j.mser.2005.04.002.
- Kim P., Shi L., Majumdar A., McEuen P.L. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett, 2001, no. 87. https://doi.org/10.1103/physrevlett.87.215502.
- Fu S., Sun Z., Huang P., Li Y., Hu N. Some basic aspects of polymer nanocomposites: A critical review. Nano Mater Sci, 2019, no. 1, pp. 2-30. https://doi.org/10.1016/j.nanoms.2019.02.006.
- Yu M.F., Lourie O., Dyer M.J., Moloni K, Kelly T.F., Ruoff R.S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science (80), 2000, no. 287, pp. 637-640. https://doi.org/10.1126/science.287.5453.637.
- Breuer O., Sundararaj U. Big returns from small fibers: A review of polymer/carbon nanotube composites. Polym Compos 2004, no. 25, pp. 630-45. https://doi.org/10.1002/pc.20058.
- Tibbetts G.G., Lake M.L., Strong K.L., Rice B.P. A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites.Compos SciTechnol, 2007, no. 67, pp. 1709-18. https://doi.org/10.1016/j.compscitech.2006.06.015.
- Eatemadi A., Daraee H., Karimkhanloo H., Kouhi M., Zarghami N., Akbarzadeh A, et al. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res Lett 2014, no. 9, pp. 1-13. https://doi.org/10.1186/1556-276X-9-393.
- Annu A., Bhattacharya B., Singh P.K., Shukla P.K., Rhee H.W. Carbon nanotube using spray pyrolysis: Recent scenario. J Alloys Compd, 2017, no. 691, pp. 970-82. https://doi.org/10.1016/j.jallcom.2016.08.246.
- Shirasu K., Yamamoto G., Tamaki I., Ogasawara T., Shimamura Y., Inoue Y., et al. Negative axial thermal expansion coefficient of carbon nanotubes: Experimental determination based on measurements of coefficient of thermal expansion for aligned carbon nanotube reinforced epoxy composites. Carbon N Y, 2015, no. 95, pp. 904-9. https://doi.org/10.1016/j.carbon.2015.09.026.
- Kwon Y.K., Berber S., Tománek D. Thermal Contraction of Carbon Fullerenes and Nanotubes. Phys Rev Lett, 2004, no. 92, pp. 4. https://doi.org/10.1103/PhysRevLett.92.015901.
- Ajayan P.M., Stephan O., Colliex C., Trauth D. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science (80) 1994, no. 265, pp. 1212-4. https://doi.org/10.1126/science.265.5176.1212.
- Garg A., Sinnott S.B. Effect of chemical functionalization on the mechanical properties of carbon nanotubes. ChemPhysLett, 1998, no. 295, pp. 273-8. https://doi.org/10.1016/S0009-2614 (98) 00969-5.
- Shokrieh M.M., MasoudKamali S. Theoretical and experimental studies on residual stresses in laminated polymer composites. J Compos Mater, 2005, no. 39, pp. 2213-25. https://doi.org/10.1177/0021998305053511.
- Shokrieh M.M., Akbari S., Daneshvar A. Reduction of residual stresses in polymer composites using nano-additives. Residual Stress Compos Mater, 2014, pp. 350-73. https://doi.org/10.1533/9780857098597.2.350.
- Hahn H.T., Pagano N.J. Curing Stresses in Composite Laminates. J Compos Mater 1975, no. 9, pp. 91-106. https://doi.org/10.1177/002199837500900110.
- Kurtz R.D., Pagano N.J. Analysis of the deformation of a symmetrically-loaded fiber embedded in a matrix material.ComposEng, 1991, no. 1, рp. 13-27. https://doi.org/10.1016/0961-9526 (91) 90022-K.
- Huang Z.M. Strength formulae of unidirectional composites including thermal residual stresses. Mater Lett 2000, no. 43, pp. 36-42. https://doi.org/10.1016/S0167-577X (99) 00227-X.
- Papanicolaou G.C., Michalopoulou M.V., Anifantis N.K. Thermal stresses in fibrous composites incorporating hybrid interphase regions.Compos SciTechnol, 2002, no. 62, pp. 1881-94. https://doi.org/10.1016/S0266-3538 (02) 00103-3.
- Hashin Z, Walter Rosen B. The elastic moduli of fiber-reinforced materials. J ApplMech Trans ASME 1964, no. 31, pp. 223-32. https://doi.org/10.1115/1.3629590.
- Steven Johnson W., Masters J., Kevin O’Brien T., Naik R. Simplified Micromechanical Equations for Thermal Residual Stress Analysis of Coated Fiber Composites. J Compos Technol Res 1992, no. 14, pp. 182. https://doi.org/10.1520/ctr10096j.
- K. Jayaraman, K.L. Reifsnider. Residual stresses in a composite with continuously varying Young's modulus in the fiber/matrix interphase. J Compos Mater, 1992, vol. 26 (6), pp. 770-791.
- Jayaraman K., Reifsnider K.L. Residual Stresses in a Composite with Continuously Varying Young’s Modulus in the Fiber/Matrix Interphase. J Compos Mater, 1992, no. 26, рр. 770-91. https://doi.org/10.1177/002199839202600601.
- Bianchi V., Goursat P., Ménessier E. Carbon-fiber-reinforced ymas glass-ceramic-matrix composites - IV. Thermal residual stresses and fiber/matrix interfaces.Compos SciTechnol 1998, no. 58, pp. 409-18. https://doi.org/10.1016/s0266-3538 (97) 00139-5.
- Hsueh C.H., Becher P.F. Thermal Expansion Coefficients of Unidirectional Fiber-Reinforced Ceramics. J Am Ceram Soc 1988, vol. 71, рр. C438-41. https://doi.org/10.1111/j.1151-2916.1988.tb07521.x.
- Epstein M. The Eshelby tensor and the theory of continuous distributions of inhomogeneities. Mech Res Commun, 2002, no. 29, pp. 501-6. https://doi.org/10.1016/S0093-6413 (02) 00303-8.
- Shokrieh M.M., Safarabadi M. Effects of imperfect adhesion on thermal micro-residual stresses in polymer matrix composites.Int J AdhesAdhes, 2011, no. 31, pp. 490-7. https://doi.org/10.1016/j.ijadhadh.2011.04.002.
- Abdalla M., Dean D., Theodore M., Fielding J., Nyairo E., Price G. Magnetically processed carbon nanotube/epoxy nanocomposites: Morphology, thermal, and mechanical properties. Polymer (Guildf), 2010, no. 51, pp. 1614-20. https://doi.org/10.1016/j.polymer.2009.05.059.
- Green K.J., Dean D.R., Vaidya U.K., Nyairo E. Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: Synthesis, mechanical, and thermomechanical behavior.Compos Part A ApplSciManuf, 2009, no. 40, pp. 1470-5. https://doi.org/10.1016/j.compositesa.2009.05.010.
- Hummers WS, Offeman RE. Preparation of Graphitic Oxide. J Am ChemSoc, 1958, no. 80 pp. 1339. https://doi.org/10.1021/ja01539a017.
- Chen Y., Xu C., Hou Z., Zhou M., He B., Wang W., et al. 3D N, S-co-doped carbon nanotubes/graphene/MnS ternary hybrid derived from Hummers’ method for highly efficient oxygen reduction reaction. Mater Today Energy, 2020, no. 16. https://doi.org/10.1016/j.mtener.2020.100402.
- ООО "НаноТехЦентр», available at: http://www.nanotc.ru/producrions/87-cnm-taunit
- Catalysis, available at: http://www.catalysis.ru/block/ index.php?ID=3&SECTION_ID=1501
- Ouarhim W., Hassani F.S., Qaiss A.K., Bouhfid R. Rheology of polymer nanocomposites. RheolPolym Blends Nanocomposites Theory, Model Appl, 2019, pp. 73-96. https://doi.org/10.1016/B978-0-12-816957-5.00005-7.
- Nadiv R., Fernandes R.MF., Ochbaum G., Dai J., Buzaglo M., Varenik M., et al. Polymer nanocomposites: Insights on rheology, percolation and molecular mobility. Polymer (Guildf), 2018, no. 153, pp. 52-60. https://doi.org/10.1016/j.polymer.2018.07.079.
- Bauhofer W., Kovacs J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites.Compos SciTechnol, 2009, no. 69, pp. 1486-98. https://doi.org/10.1016/j.compscitech.2008.06.018.
- Sandler J.K.W, Kirk J.E., Kinloch I.A., Shaffer M.S.P, Windle A.H. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer (Guildf) 2003, no. 44, pp. 5893-9. https://doi.org/10.1016/S0032-3861 (03) 00539-1.
- Pan J., Bian L. A physics investigation for influence of carbon nanotube agglomeration on thermal properties of composites. Mater ChemPhys, 2019, no. 236. https://doi.org/10.1016/j.matchemphys.2019.121777.
- Mori T., Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. ActaMetall, 1973, no. 21, pp. 571-4. https://doi.org/10.1016/0001-6160 (73) 90064-3.
- Raju B., Hiremath S.R., Roy Mahapatra D. A review of micromechanics based models for effective elastic properties of reinforced polymer matrix composites.Compos Struct, 2018, no. 204, pp. 607-19. https://doi.org/10.1016/j.compstruct.2018.07.125.
- Kazakov I.A., Krasnovskii A.N., Kishuk P.S. The influence of randomly oriented CNTs on the elastic properties of unidirectionally aligned composites. Mech Mater, 2019, no. 134, pp. 54-60. https://doi.org/10.1016/j.mechmat.2019.04.002.
- Dong C. Mechanical and thermo-mechanical properties of carbon nanotube reinforced composites.Int J Smart Nano Mater, 2014, no. 5, pp. 44-58. https://doi.org/10.1080/19475411.2014.896427.
- Chang T., Gao H. Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J MechPhys Solids, 2003, no. 51, pp. 1059-74. https://doi.org/10.1016/S0022-5096 (03) 00006-1.
- Stobinski L., Lesiak B., Kövér L., Tóth J., Biniak S., Trykowski G., etal. Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J Alloys Compd, 2010, no. 50, pp. 77-84. https://doi.org/10.1016/j.jallcom.2010.04.032.
- Takao Y., Taya M. Thermal expansion coefficients and thermal stresses in an aligned short fiber composite with application to a short carbon fiber/aluminum. J ApplMech Trans ASME, 1985, no. 52, pp. 806-10. https://doi.org/10.1115/1.3169150.
- Rosen B.W., Hashin Z. Effective thermal expansion coefficients and specific heats of composite materials.Int J EngSci, 1970, no. 8, pp. 157-73. https://doi.org/10.1016/0020-7225(70)90066-2.
- Hyer M.W. Calculations of the Room-Temperature Shapes of Unsymmetric Laminates. J Compos Mater, 1981, no. 15, pp. 296-310. https://doi.org/10.1177/002199838101500401.
- Dano M.L., Hyer M.W. Thermally-induced deformation behavior of unsymmetric laminates.Int J Solids Struct, 1998, no. 35, pp. 2101-20. https://doi.org/10.1016/S0020-7683(97)00167-4.
- Betts D.N., Salo A.I.T, Bowen C.R., Kim H.A. Characterisation and modelling of the cured shapes of arbitrary layup bistable composite laminates.Compos Struct, 2010, no. 92, pp. 1694-700. https://doi.org/10.1016/j.compstruct.2009.12.005.
- Pradere C., Sauder C. Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high temperatures (300-2500 K). Carbon N Y, 2008, no. 46, pp. 1874-84. https://doi.org/10.1016/j.carbon.2008.07.035.
- Duan S., Liu F., Pettersson T., Creighton C., Asp L.E. Determination of transverse and shear moduli of single carbon fibres. Carbon N Y, 2020, no. 158, pp. 772-82. https://doi.org/10.1016/j.carbon.2019.11.054.
- Mehanicheskie svojstva modificirovannyh odnostennymi uglerodnymi nanotrubkami jepoksidnyh svjazujushhih dlja armirovannyh kompozicionnyh materialov. Vestnik Voronezhskogo Gosudarstvennogo Tehnicheskogo Universiteta, 2016, pp. 12.
- Guo F., Yan Y., Hong Y., Li X., Ye J. Theoretical prediction for thermal expansion coefficients of unidirectional fiber-reinforced composites with variable elliptical cross-sections. Polym Compos, 2019, no. 40, pp. 187-201. https://doi.org/10.1002/pc.24627.
- Daniel I.M, Ishai O. Engineering Mechanics of Composite Material. Second ed. New York: Oxford University Press, 2006.
- Asprotec, available at: http://www.asprotec.ru/pub/ IMS65_E23.pdf
- Herráez M., Mora D., Naya F., Lopes C.S., González C., Llorca J. Transverse cracking of cross-ply laminates: A computational micromechanics perspective.Compos SciTechnol, 2015, no. 110, pp. 196-204. https://doi.org/10.1016/j.compscitech.2015.02.008.
- Toraycma, available at: https://www.toraycma.com/file_viewer.php?id=5121
- Maurin R., Davies P., Baral N., Baley C. Transverse properties of carbon fibres by nano-indentation and micro-mechanics. Appl Compos Mater, 2008, no. 15, pp. 61-73. https://doi.org/10.1007/s10443-008-9057-3.
- Ran Z., Yan Y., Li J., Qi Z., Yang L. Determination of thermal expansion coefficients for unidirectional fiber-reinforced composites. Chinese J Aeronaut, 2014, no. 27. pp. 1180-7. https://doi.org/10.1016/j.cja.2014.03.010.
- Arao Y., Koyanagi J., Utsunomiya S., Kawada H. Effect of ply angle misalignment on out-of-plane deformation of symmetrical cross-ply CFRP laminates: Accuracy of the ply angle alignment.Compos Struct, 2011, no. 93, pp. 1225-30. https://doi.org/10.1016/j.compstruct.2010.10.019.
- Steeves J., Pellegrino S. Post-cure shape errors of ultra-thin symmetric CFRP laminates: Effect of ply-level imperfections.Compos Struct, 2017, no. 164, pp. 237-47. https://doi.org/10.1016/j.compstruct.2016.12.075.