The role of agroforestry in ecosystem services and mitigation of climate change

Автор: Worku A.

Журнал: Овощи России @vegetables

Рубрика: Общее земледелие, растениеводство

Статья в выпуске: 4 (78), 2024 года.

Бесплатный доступ

Relevance. Agroforestry systems are believed to provide a multitude of ecological services. It is thought that agroforestry enhances resilience to the impacts of climate change and aids in adaptation by supporting diverse land use practices, sustainable lifestyles, and income streams, as well as increasing productivity in both forests and agriculture, and reducing weather-related losses in production. Results and Discussion. The aim of this review was to present genuine evidence on the role of agroforestry in ecosystem conservation and mitigation of climate change impacts. Compared to monocropping and open cereal-based agriculture, agroforestry has made a more significant contribution to ecosystem conservation and in reducing carbon dioxide emissions. However, it has been found that agroforestry contributes less to carbon sequestration than natural forests. Carbon sequestration through above-ground and underground biomass, carbon emission reduction from deforestation, and microclimate adjustment are key measures for mitigating climate change. Agroforestry systems provide essential ecosystem services, such as food, fuel wood, fodder, income, and improved soil production, which enable communities to cope better with the impacts of climate change. Therefore, agroforestry must be given significant attention if it is to play a crucial role in ecosystem management.

Еще

Agriculture, biodiversity, carbon dioxide, homegarden, species diversity

Короткий адрес: https://sciup.org/140305790

IDR: 140305790   |   DOI: 10.18619/2072-9146-2024-4-111-119

Список литературы The role of agroforestry in ecosystem services and mitigation of climate change

  • Mbow C., Van Noordwijk M., Luedeling E., Neufeldt H., Minang P.A., Kowero G. Agroforestry solutions to address food security and climate change challenges in Africa. Current Opinion in Environmental Sustainability. 2014;6:61-7. https://doi.org/10.1016/J.COSUST.2013.10.014
  • Amare D., Wondie M., Mekuria W., Darr D. Agroforestry of smallholder farmers in Ethiopia: practices and benefits. Small-scale Forestry. 2019;18:39-56. https://doi.org/10.1007/s11842-018-9405-6
  • Jhariya M.K., Meena R.S., Banerjee A., Kumar S., Raj A. Agroforestry for carbon and ecosystem management: an overview. Agroforestry for Carbon and Ecosystem Management. 2024. P. 3-16. ISBN: 9780323953931
  • Santoro A., Venturi M., Bertani R., Agnoletti M. A review of the role of forests and agroforestry systems in the FAO Globally Important Agricultural Heritage Systems (GIAHS) programme. Forests. 2020;11(8):860. https://doi.org/10.3390/f11080860
  • Banerjee A., Jhariya M.K., Bargali S.S., Palit D. Ecorestoration for Environmental Sustainability-An Introductory Framework. Ecorestoration for Sustainability. 2023:1-47. https://doi.org/10.1002/9781119879954.ch1
  • Bai X., Huang Y., Ren W., Coyne M., Jacinthe P.A., Tao B., et al. Responses of soil carbon sequestration to climate-smart agriculture practices: A meta-analysis. Global change biology. 2019;25(8):2591-606. https://doi.org/10.1111/gcb.14658
  • Santos P.Z.F., Crouzeilles R., Sansevero J.B.B. Can agroforestry systems enhance biodiversity and ecosystem service provision in agricultural landscapes? A meta-analysis for the Brazilian Atlantic Forest. Forest ecology and management. 2019;433:140-5. https://doi.org/10.1016/j.foreco.2018.10.064
  • Jhariya M.K., Meena R.S., Banerjee A., Meena S.N. Natural resources conservation and advances for sustainability: Elsevier; 2021. Paperback ISBN: 9780128229767. eBook ISBN: 9780128231128.
  • Browder J.O., Wynne R.H., Pedlowski M.A. Agroforestry diffusion and secondary forest regeneration in the Brazilian Amazon: further findings from the Rondônia Agroforestry Pilot Project (1992-2002). Agroforestry Systems. 2005;65:99-111. https://doi.org/10.1007/s10457-004-6375-9
  • Maia A.G., dos Santos Eusebio G., Fasiaben Md.C.R., Moraes A.S., Assad E.D, Pugliero V.S. The economic impacts of the diffusion of agroforestry in Brazil. Land use policy. 2021;108:105489.
  • Duffy C., Toth G.G., Hagan R.P., McKeown P.C., Rahman S.A., Widyaningsih Y., et al. Agroforestry contributions to smallholder farmer food security in Indonesia. Agroforestry Systems. 2021;95(6):1109-24. https://doi.org/10.1007/s10457-021-00632-8
  • Ripple W.J., Wolf C., Newsome T.M., Barnard P., Moomaw W.R. World scientists’ warning of a climate emergency. BioScience. 2020;70(1):8-12.
  • Climate Change and Land: An IPCC Special Report on Climate Change. Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. 412019.
  • Tengberg A., Bargues-Tobella A., Barron J., Ilstedt U., Jaramillo F., Johansson K., et al. Water for productive and multifunctional landscapes. Stockholm International Water Institute: Stockholm, Sweden. 2018.
  • Raj A., Jhariya M.K., Banerjee A., Nema S., Bargali K. Land and Environmental Management Through Forestry: John Wiley & Sons; 2023. ISBN: 978-1-119-91050-3
  • Gebre A.B. Potential effects of agroforestry practices on climate change mitigation and adaptation strategies: a review. Journal of Natural Sciences Research. 2016;6(15):83-9.
  • Mbow C., Smith P., Skole D., Duguma L., Bustamante M. Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Current opinion in Environmental sustainability. 2014;6(1):8-14. https://doi.org/10.1016/j.cosust.2013.09.002
  • Dwivedi R., Kareemulla K., Singh R., Rizvi R., Chauhan J. Socio-economic analysis of agroforestry systems in Western Uttar Pradesh. Indian Research Journal of Extension Education. 2016;7(3):18-22.
  • Hagazi N., Hadgu K.M., Tafere B., Mokria M., Birhane E., Abiyu A., et al. A Guide to Landscape Restoration Initiatives: Planning, Implementation, Monitoring and Evaluation with Evidence and Lessons from Tigray, Ethiopia. https://www.cifor-icraf.org/knowledge/publication/34873
  • Darge A., Haji J., Beyene F., Ketema M. Smallholder farmers’ climate change adaptation strategies in the Ethiopian Rift Valley: The case of home garden agroforestry systems in the Gedeo Zone. Sustainability. 2023;15(11):8997. https://doi.org/10.3390/su15118997
  • Madalcho A., Tefera M. Management of traditional agroforestry practices in Gununo Watershed in Wolaita Zone, Ethiopia. Forest Research. 2016;5(1):1-6. https://doi.org/10.4172/2168-9776.1000163
  • Zenebe Gebreegziabher Z.G., Stage J., Alemu Mekonnen A.M., Atlaw Alemu A.A. Climate change and the Ethiopian economy: a computable general equilibrium analysis. 2011.
  • Deresa F., Legesse T. Cause of land degradation and its impacts on livelihoods of the population in Toke Kutaye Woreda, Ethiopia. International Journal of Scientific and Research Publications. 2015;5(5):1-9.
  • Yohannes H. A review on relationship between climate change and agriculture. Journal of Earth Science & Climatic Change. 2016;7(2):335. https://doi.org/10.4172/2157-7617.1000335
  • Pender J., Gebremedhin B. Determinants of agricultural and land management practices and impacts on crop production and household income in the highlands of Tigray, Ethiopia. Journal of African Economies. 2008;17(3):395-450. https://doi.org/10.1093/jae/ejm028
  • Garrity D.P. Agroforestry and the achievement of the Millennium Development Goals. Agroforestry systems. 2004;61:5-17. https://doi.org/10.1007/978-94-017-2424-1_1
  • Harvey C.A., González Villalobos J.A. Agroforestry systems conserve species-rich but modified assemblages of tropical birds and bats. Biodiversity and Conservation. 2007;16:2257-92.
  • Lin B.B. Resilience in agriculture through crop diversification: adaptive management for environmental change. BioScience. 2011;61(3):183- 93. https://doi.org/10.1525/bio.2011.61.3.4
  • Gebru B.M., Wang S.W., Kim S.J., Lee W.-K. Socio-ecological niche and factors affecting agroforestry practice adoption in different agroecologies of southern Tigray, Ethiopia. Sustainability. 2019;11(13):3729. https://doi.org/10.3390/su11133729
  • Roshetko J.M., Rohadi D., Perdana A., Sabastian G., Nuryartono N., Pramono A.A., et al. Teak agroforestry systems for livelihood enhancement, industrial timber production, and environmental rehabilitation. Forests, Trees and Livelihoods. 2013;22(4):241-56. https://doi.org/10.1080/14728028.2013.855150
  • do Carmo Martinelli G., Schlindwein M.M., Padovan M.P., Vogel E., Ruviaro C.F. Environmental performance of agroforestry systems in the Cerrado biome, Brazil. World Development. 2019;122:339-48. https://doi.org/10.1016/j.worlddev.2019.06.003
  • Reynolds P.E., Simpson J.A., Thevathasan N.V., Gordon A.M. Effects of tree competition on corn and soybean photosynthesis, growth, and yield in a temperate tree-based agroforestry intercropping system in southern Ontario, Canada. Ecological engineering. 2007;29(4):362-71. https://doi.org/10.1016/j.ecoleng.2006.09.024
  • Iskandar J., Iskandar B.S., Partasmita R. Responses to environmental and socio-economic changes in the Karangwangi traditional agroforestry system, South Cianjur, West Java. Biodiversitas Journal of Biological Diversity. 2016;17(1):332-341. https://doi.org/10.13057/biodiv/d170145
  • Ollinaho O.I, Kröger M. Agroforestry transitions: The good, the bad and the ugly. Journal of Rural Studies. 2021;82:210-221. https://doi.org/10.1016/j.jrurstud.2021.01.016
  • Ickowitz A., Rowland D., Powell B., Salim M.A., Sunderland T. Forests, trees, and micronutrient-rich food consumption in Indonesia. PloS one. 2016;11(5):e0154139. https://doi.org/10.1371/journal.pone.0154139
  • Pratiwi A., Suzuki A. Reducing agricultural income vulnerabilities through agroforestry training: evidence from a randomised field experiment in Indonesia. Bulletin of Indonesian Economic Studies. 2019;55(1):83-116. https://doi.org/10.1080/00074918.2018.1530726
  • Mukhlis I., Rizaludin M.S., Hidayah I. Understanding socio-economic and environmental impacts of agroforestry on rural communities. Forests. 2022;13(4):556. https://doi.org/10.3390/f13040556
  • Sharma N., Bohra B., Pragya N., Ciannella R., Dobie P., Lehmann S. Bioenergy from agroforestry can lead to improved food security, climate change, soil quality, and rural development. Food and Energy Security. 2016;5(3):165-183. https://doi.org/10.1002/fes3.87
  • Torralba M., Fagerholm N., Burgess P.J., Moreno G., Plieninger T. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agriculture, ecosystems & environment. 2016;230:150-161. https://doi.org/10.1016/j.agee.2016.06.002
  • Crossman N.D., Burkhard B., Nedkov S., Willemen L., Petz K., Palomo I., et al. A blueprint for mapping and modelling ecosystem services. Ecosystem services. 2013;4:4-14.
  • Fagerholm N., Torralba M., Burgess P.J., Plieninger T. A systematic map of ecosystem services assessments around European agroforestry. Ecological Indicators. 2016;62:47-65. https://doi.org/10.1016/j.ecolind.2015.11.016
  • De Groot R.S., Alkemade R., Braat L., Hein L., Willemen L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological complexity. 2010;7(3):260-272. https://doi.org/10.1016/j.ecocom.2009.10.006
  • Montagnini F. Environmental services of agroforestry systems: CRC Press; 2006. ISBN 9781560221319.
  • Sarvade S. Agroforestry: refuge for biodiversity conservation. International Journal of Innovative Research in Science & Engineering. 2014;2(5):424-429.
  • Jose S. Agroforestry for conserving and enhancing biodiversity. Agroforestry systems. 2012;85:1-8.
  • Kumar A. Chapter-3 Recent Trends in Agroforestry. Chief Editor Dr RK Naresh. In book: Advances in Agricultural Sciences. 2019. pp.35-52. Publisher: AkiNik Publications New Delhi
  • Chatterjee N., Nair P.R., Chakraborty S., Nair V.D. Changes in soil carbon stocks across the Forest-Agroforest-Agriculture/Pasture continuum in various agroecological regions: A meta-analysis. Agriculture, ecosystems & environment. 2018;266:55-67. https://doi.org/10.1016/j.agee.2018.07.014
  • Hailu G. A review on the comparative advantage of intercropping systems. Journal of Biology, Agriculture and Healthcare. 2015;5(7):28-38.
  • Lacombe S., Bradley R.L., Hamel C., Beaulieu C. Do tree-based intercropping systems increase the diversity and stability of soil microbial communities? Agriculture, Ecosystems & Environment. 2009;131(1- 2):25-31. https://doi.org/10.1016/j.agee.2008.08.010
  • Tyndall J., Colletti J. Mitigating swine odor with strategically designed shelterbelt systems: a review. Agroforestry systems. 2007;69:45-65. https://doi.org/10.1007/s10457-006-9017-6
  • Schroth G., da Mota Md.S.S, Hills T., Soto-Pinto L., Wijayanto I., Arief C.W., et al. Linking carbon, biodiversity and livelihoods near forest margins: the role of agroforestry. Carbon sequestration potential of agroforestry systems: opportunities and challenges. 2011:179-200. https://doi.org/10.1007/978-94-007-1630-8_10
  • Mohan Kumar B., Ramachandran Nair P.K. Carbon sequestration potential of agroforestry systems: opportunities and challenges. 2011.
  • Charles R.L., Nzunda E.F., Munishi P. Agroforestry as a resilient strategy in mitigating climate change in Mwanga District, Kilimanjaro, Tanzania. Global Journal of Bilogy, Agriculture and Health Sciences. 2014;3:11-17.
  • Nair P. Carbon sequestration studies in agroforestry systems: a reality-check. Agroforestry systems. 2012;86:243-253. https://doi.org/10.1007/s10457-011-9434-z
  • Brakas S.G., Aune J.B. Biomass and carbon accumulation in land use systems of Claveria, the Philippines. Carbon sequestration potential of agroforestry systems: Opportunities and challenges. 2011:163-175. https://doi.org/10.1007/978-94-007-1630-8_9
  • Singh V.S., Pandey D.N. Multifunctional agroforestry systems in India: science-based policy options: Climate Change and CDM Cell, Rajasthan State Pollution Control Board Jaipur …; 2011.
  • Dawson I., Harwood C., Jamnadass R., Beniest J. Agroforestry tree domestication: a primer. 2012. ISBN: 978-92-9059-317-1.
  • Neufeldt H., Jahn M., Campbell B.M., Beddington J.R., DeClerck F., De Pinto A., et al. Beyond climate-smart agriculture: toward safe operating spaces for global food systems. Agriculture & Food Security. 2013;2(12):1-6. https://doi.org/10.1186/2048-7010-2-12
  • Smith P. Global greenhouse gas mitigation potential in agriculture. IOP Conference Series Earth and Environmental Science. February 2009;6(24):242001. https://doi.org/10.1088/1755-1307/6/4/242001
  • Manaye A., Tesfamariam B., Tesfaye M., Worku A., Gufi Y. Tree diversity and carbon stocks in agroforestry systems in northern Ethiopia. Carbon Balance and Management. 2021;16(1):14. https://doi.org/10.1186/s13021-021-00174-7
  • Nigatu A., Wondie M., Alemu A., Gebeyehu D., Workagegnehu H. Productivity of highland bamboo (Yushania alpina) across different plantation niches in West Amhara, Ethiopia. Forest Science and Technology. 2020;16(3):116-122. https://doi.org/10.1080/21580103.2020.1791260
  • Reppin S., Kuyah S., de Neergaard A., Oelofse M., Rosenstock T.S. Contribution of agroforestry to climate change mitigation and livelihoods in Western Kenya. Agroforestry Systems. 2020;94(3):203-220. https://doi.org/10.1007/s10457-019-00383-7
  • Fuchs L.E., Orero L., Ngoima S., Kuyah S., Neufeldt H. Asset-based adaptation project promotes tree and shrub diversity and above-ground carbon stocks in smallholder agroforestry systems in Western Kenya. Frontiers in Forests and Global Change. 2022;4:773170. https://doi.org/10.3389/ffgc.2021.773170
  • Mengistu S., Keftasa D., Yami A. Productivity of four Sesbania species on two soil types in Ethiopia. Agroforestry systems. 2002;54:235-44.
  • Furo G., Manaye A., Negasa A. Identification of spice shade and support tree species, south western Ethiopia. Agroforestry Systems. 2020;94(1):95-102. https://doi.org/10.1007/s10457-019-00372-w
  • Henry M., Tittonell P., Manlay R.J., Bernoux M., Albrecht A., Vanlauwe B. Biodiversity, carbon stocks and sequestration potential in aboveground biomass in smallholder farming systems of western Kenya. Agriculture, ecosystems & environment. 2009;129(1-3):238-52. https://doi.org/10.1016/j.agee.2008.09.006
  • Negash M., Starr M. Biomass and soil carbon stocks of indigenous agroforestry systems on the south-eastern Rift Valley escarpment, Ethiopia. Plant and soil. 2015;393(1):95-107. https://doi.org/10.1007/s11104-015-2469-6
  • Vanderhaegen K., Verbist B., Hundera K., Muys B. REALU vs. REDD+: Carbon and biodiversity in the Afromontane landscapes of SW Ethiopia. Forest Ecology and Management. 2015;343:22-33. https://doi.org/10.1016/j.foreco.2015.01.016
  • Sahle M., Saito O., Fürst C., Yeshitela K. Quantification and mapping of the supply of and demand for carbon storage and sequestration service in woody biomass and soil to mitigate climate change in the socio-ecological environment. Science of the total environment. 2018;624:342-354. https://doi.org/10.1016/j.scitotenv.2017.12.033
  • Betemariyam M., Negash M., Worku A. Comparative analysis of carbon stocks in home garden and adjacent coffee based agroforestry systems in Ethiopia. Small-Scale Forestry. 2020;19(3):319-334. https://doi.org/10.1007/s11842-020-09439-4
  • Birhane E., Ahmed S., Hailemariam M., Negash M., Rannestad M.M., Norgrove L. Carbon stock and woody species diversity in homegarden agroforestry along an elevation gradient in southern Ethiopia. Agroforestry Systems. 2020;94(155):1099-1110. https://doi.org/10.1007/s10457-019-00475-4
  • Lulu M., Lemma B., Melese A. Soil organic carbon and nutrients in smallholding land uses in southern Ethiopia. Journal of Plant Nutrition and Soil Science. 2020;183(1):69-79. https://doi.org/10.1002/jpln.201900243
  • Negash M., Kaseva J., Kahiluoto H. Perennial monocropping of khat decreased soil carbon and nitrogen relative to multistrata agroforestry and natural forest in southeastern Ethiopia. Regional Environmental Change. 2022;22(2):38. https://doi.org/10.1007/s10113-022-01905-3
  • Gelaw A.M., Singh B., Lal R. Soil organic carbon and total nitrogen stocks under different land uses in a semi-arid watershed in Tigray, Northern Ethiopia. Agriculture, ecosystems & environment. 2014;188:256-263. https://doi.org/10.1016/j.agee.2014.02.035
  • Gurmessa B., Demessie A., Lemma B. Dynamics of soil carbon stock, total nitrogen, and associated soil properties since the conversion of Acacia woodland to managed pastureland, parkland agroforestry, and treeless cropland in the Jido Komolcha District, southern Ethiopia. Journal of Sustainable Forestry. 2016;35(5):324-337. https://doi.org/10.1080/10549811.2016.1175950
  • Chiemela S.N., Noulèkoun F., Chiemela C.J., Zenebe A., Abadi N., Birhane E. Conversion of degraded agricultural landscapes to a smallholder agroforestry system and carbon sequestration in drylands. International Journal of Climate Change Strategies and Management. 2018;10(3):472-487. https://doi.org/10.1108/IJCCSM-08-2015-0116
  • Dilla A.M., Smethurst P.J., Barry K., Parsons D. Preliminary estimate of carbon sequestration potential of Faidherbia albida (Delile) A. Chev in an agroforestry parkland in the Central Rift Valley of Ethiopia. Forests, Trees and Livelihoods. 2019;28(2):79-89. https://doi.org/10.1080/14728028.2018.1564146
  • Tumwebaze S.B., Byakagaba P. Soil organic carbon stocks under coffee agroforestry systems and coffee monoculture in Uganda. Agriculture, Ecosystems & Environment. 2016;216:188-193. https://doi.org/10.1016/j.agee.2015.09.037
  • Justine N., Tumwebaze B.S., Ritah K., Nabanoga G. Aboveground Species Diversity and Carbon Stocks in Smallholder Coffee Agroforestry in the Highlands of Uganda. Agriculture and Ecosystem Resilience in Sub Saharan Africa: Livelihood Pathways Under Changing Climate. 2019:403- 415. https://doi.org/10.1007/978-3-030-12974-3_18
  • Toru T., Kibret K. Carbon stock under major land use/land cover types of Hades sub-watershed, eastern Ethiopia. Carbon balance and management. 2019;14:1-14. https://doi.org/10.1186/s13021-019-0122-z
  • Kuyah S, Dietz J., Muthuri C., Jamnadass R., Mwangi P., Coe R., et al. Allometric equations for estimating biomass in agricultural landscapes: II. Belowground biomass. Agriculture, ecosystems & environment. 2012;158:225-234. https://doi.org/10.1016/j.agee.2012.05.010
  • Kuyah S., Dietz J., Muthuri C., van Noordwijk M., Neufeldt H. Allometry and partitioning of above-and below-ground biomass in farmed eucalyptus species dominant in Western Kenyan agricultural landscapes. Biomass and bioenergy. 2013;55:276-284. https://doi.org/10.1016/j.biombioe.2013.02.011
  • Gebrewahid Y., Gebre-Egziabhier T.-B., Teka K., Birhane E. Carbon stock potential of scattered trees on farmland along an altitudinal gradient in Tigray, Northern Ethiopia. Ecological processes. 2018;7:1-8. https://doi.org/10.1186/s13717-018-0152-6
  • Gebremeskel D., Birhane E., Rannestad M.M., Gebre S., Tesfay G. Biomass and soil carbon stocks of Rhamnus prinoides based agroforestry practice with varied density in the drylands of Northern Ethiopia. Agroforestry Systems. 2021;95(7):1275-1293. https://doi.org/10.1007/s10457-021-00608-8
  • Hagos H., Tesfay G., Brhane E., Abrha H., Bezabh T., Tesfay B., et al. Comparison of carbon stock potential of farmland trees in the midlands of Hawzen, Northern Ethiopia. Sustainable Environment. 2021;7(1):1973696. https://doi.org/10.1080/27658511.2021.1973696
  • Osei A., Kimaro A.A., Peak D., Gillespie A., Van Rees K. Soil carbon stocks in planted woodlots and Ngitili systems in Shinyanga, Tanzania. Agroforestry systems. 2018;92:251-262. https://doi.org/10.1007/s10457-016-0028-7
  • Negash M., Kanninen M. Modeling biomass and soil carbon sequestration of indigenous agroforestry systems using CO2FIX approach. Agriculture, Ecosystems & Environment. 2015;203:147-155. https://doi.org/10.1016/j.agee.2015.02.004
  • Kimaro A., Isaac M., Chamshama S. Carbon pools in tree biomass and soils under rotational woodlot systems in Eastern Tanzania. Carbon Sequestration Potential of Agroforestry Systems: Opportunities and Challenges. 2011:129-143. https://doi.org/10.1007/978-94-007-1630-8_7
  • Duguma L.A. Financial analysis of agroforestry land uses and its implications for smallholder farmers livelihood improvement in Ethiopia. Agroforestry systems. 2013;87:217-231. https://doi.org/10.1007/s10457-012-9537-1
  • Gebreegziabher Z., van Kooten G.C. Does community and household tree planting imply increased use of wood for fuel? Evidence from Ethiopia. Forest Policy and Economics. 2013;34:30-40. https://doi.org/10.1016/j.forpol.2013.03.003
  • Verchot L.V., Van Noordwijk M., Kandji S., Tomich T., Ong C., Albrecht A., et al. Climate change: linking adaptation and mitigation through agroforestry. Mitigation and adaptation strategies for global change. 2007;12:901-918. https://doi.org/10.1007/s11027-007-9105-6
  • Carsan S., Stroebel A., Dawson I., Kindt R., Mbow C., Mowo J., et al. Can agroforestry option values improve the functioning of drivers of agricultural intensification in Africa? Current Opinion in Environmental Sustainability. 2014;6:35-40. https://doi.org/10.1016/j.cosust.2013.10.007
  • Lasco R.D., Delfino R.J.P., Catacutan D.C., Simelton E.S., Wilson D.M. Climate risk adaptation by smallholder farmers: the roles of trees and agroforestry. Current Opinion in Environmental Sustainability. 2014;6:83-88.
  • Hoang M., Van Noordwijk M., Fox J., Thomas D., Sinclair F., Catacutan D., et al. Are trees buffering ecosystems and livelihoods in agricultural landscapes of the Lower Mekong Basin. Consequences for Climate-Change Adaptation World Agroforestry Centre (ICRAF) Southeast Asia Regional Program, Bogor, Indonesia. 2014.
  • Murthy I.K., Gupta M., Tomar S., Munsi M., Tiwari R., Hegde G., et al. Carbon sequestration potential of agroforestry systems in India. Journal of Earth Science & Climatic Change. 2013;4(1):1-7.
  • Franzel S., Carsan S., Lukuyu B., Sinja J., Wambugu C. Fodder trees for improving livestock productivity and smallholder livelihoods in Africa. Current Opinion in Environmental Sustainability. 2014;6:98-103. https://doi.org/10.1016/j.cosust.2013.11.008
  • Bayala J., Sanou J., Teklehaimanot Z., Kalinganire A., Ouédraogo S. Parklands for buffering climate risk and sustaining agricultural production in the Sahel of West Africa. Current Opinion in Environmental Sustainability. 2014;6:28-34. https://doi.org/10.1016/j.cosust.2013.10.004
  • Iiyama M., Neufeldt H., Dobie P., Njenga M., Ndegwa G., Jamnadass R. The potential of agroforestry in the provision of sustainable woodfuel in sub-Saharan Africa. Current Opinion in Environmental Sustainability. 2014;6:138-47. https://doi.org/10.1016/j.cosust.2013.12.003
  • Asase A., Tetteh D.A. The role of complex agroforestry systems in the conservation of forest tree diversity and structure in southeastern Ghana. Agroforestry systems. 2010;79:355-368. https://doi.org/10.1007/s10457-010-9311-1
  • Thorlakson T., Neufeldt H. Reducing subsistence farmers’ vulnerability to climate change: evaluating the potential contributions of agroforestry in western Kenya. Agriculture & Food Security. 2012;1:1-13. https://doi.org/10.1186/2048-7010-1-15
  • Syampungani S., Chirwa P., Akinnifesi F., Ajayi O. The potential of using agroforestry as a win-win solution to climate change mitigation and adaptation and meeting food security challenges in Southern Africa. Agricultural Journal. 2010;5(2):80-88. https://doi.org/10.3923/aj.2010.80.88
  • Sileshi G., Akinnifesi F.K., Ajayi O.C., Chakeredza S., Kaonga M., Matakala P. Contributions of agroforestry to ecosystem services in the Miombo eco-region of eastern and southern Africa. African journal of environmental science and technology. 2007;1(4):68-80.
  • Bachi W. Determinants of Woody Species Diversity in Traditional Agroforestry Practices in South-Bench District, Southwest Ethiopia: MSc. Thesis Submitted to School of Graduate Studies, Dilla University; 2017.
  • Linger E. Agro-ecosystem and socio-economic role of homegarden agroforestry in Jabithenan District, North-Western Ethiopia: implication for climate change adaptation. SpringerPlus. 2014;3(1):154. https://doi.org/10.1186/2193-1801-3-154
  • Eshete G.T. Biodiversity and livelihoods in southwestern Ethiopia: forest loss and prospects for conservation in shade coffee agroecosystems: University of California, Santa Cruz; 2013.
  • Mekonen T., Giday M., Kelbessa E. Ethnobotanical study of homegarden plants in Sebeta-Awas District of the Oromia Region of Ethiopia to assess use, species diversity and management practices. Journal of Ethnobiology and Ethnomedicine. 2015;11:1-13. https://doi.org/10.1186/s13002-015-0049-8
  • Pretty J. Sustainable intensification in Africa. Sustainable Intensification: Routledge; 2012. p. 3-4.
  • Lin B.B. Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agricultural and Forest Meteorology. 2007;144(12):85-94. https://doi.org/10.1016/j.agrformet.2006.12.009
  • Lin B.B. Agroforestry adaptation and mitigation options for smallholder farmers vulnerable to climate change. Agroecology, Ecosystems, and Sustainability. 2014:221-38. https://doi.org/10.1201/b17775-12
  • de Souza H.N., de Goede R.G., Brussaard L., Cardoso I.M., Duarte E.M., Fernandes R.B., et al. Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agriculture, Ecosystems & Environment. 2012;146(1):179-196. https://doi.org/10.1016/j.agee.2011.11.007
  • Singh K.P., Singh B., Jhariya M.K., Khemraj, Raj A., Banerjee A., et al. Soil properties and carbon dynamics under coffee-based agroforestry system in Bastar region of Chhattisgarh, India. Environment, Development and Sustainability. 2023:1-18. https://doi.org/10.1007/s10668-023-04230-9
  • Kebebew Z., Urgessa K. Agroforestry perspective in land use pattern and farmers coping strategy: experience from southwestern Ethiopia. World Journal of Agricultural Sciences. 2011;7(1):73-77.
  • Schoeneberger M.M. Agroforestry: working trees for sequestering carbon on agricultural lands. Agroforestry systems. 2009;75:27-37. https://doi.org/10.1007/s10457-008-9123-8
Еще
Статья обзорная