The role of alternative respiratory enzymes in photosynthetic plant cells under stress
Автор: Borovskii G.B., Gorbyleva E. L., Katyshev A. I., Pyatrikas D. V., Fedoseeva I. V.
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 1 т.21, 2025 года.
Бесплатный доступ
In recent years, it has become clear that for mitochondria in photosynthetic plant cells, the main role of buffer capacity is becoming, allowing to keep under control the balance of ATP production, regulation of the level of pyridine nucleotide reduction, generation of ROS and RNS, as well as optimize the main metabolic flows, which is especially important under stress. Non-conjugated respiration is an important mechanism for achieving stable operation and maximum efficiency of photosynthetic cells. It is actively used in the light and becomes even more important under stress in lighting conditions. The most important part of these non-canonical mitochondrial functions is provided by alternative mitochondrial respiratory enzymes.
Plant mitochondria, photosynthetic cells, uncoupled respiration, alternative respiratory enzymes, reactive oxygen species
Короткий адрес: https://sciup.org/143183779
IDR: 143183779
Список литературы The role of alternative respiratory enzymes in photosynthetic plant cells under stress
- Alber N.A., Vanlerberghe G.C. (2021) The flexibility of metabolic interactions between chloroplasts and mitochondria in Nicotiana tabacum leaf. Plant J., 106, 1625–1646.
- Alizadeh R., Kumleh H.H., Rezadoost M.H. (2023) The simultaneous activity of cytosolic and mitochondrial antioxidant mechanisms in neutralizing the effect of drought stress in soybean. Plant Physiology Reports. 28, 78–91.
- Barreto P., Counago R.M., Arruda P. (2020) Mitochondrial uncoupling protein-dependent signaling in plant bioenergetics and stress response. Mitochondrion, 53, 109-120.
- Borovskii G.B., Gorbyleva E.L., Katyshev A.I., Korotaeva N.E., Polyakova E.A., Pyatrikas D.V., Fedoseeva I.V., Shigarova A.M. (2023) Effect of the overexpression of external alternative NADH dehydrogenase gene in Arabidopsis on the resistance of transformed tobacco plants to negative temperatures. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 13, 516-522. (in Russian)
- Borovskii G.B., Korotaeva N.E., Katyshev A.I., Fedoseeva I.V., Fedyaeva A.V., Kondakova M.A., Rikhvanov E.G., Shyshlova-Sokolovskaya A.M., Sauchyn D.G., Urbanovich O.Yu. (2021) The overexpression of the Arabidopsis NDB2 gene in tobacco plants affects the expression of genes encoding the alternative mitochondrial electron transport pathways and stress proteins. In Plant Genetics, Genomics, Bioinformatics, and Biotechnology: Book of abstracts of the 6th International scientific conference. Novosibirsk, 42.
- Catania A., Iuso A., Bouchereau J., Kremer L.S., Paviolo M., Terrile C., Bénit P., Rasmusson A.G., Schwarzmayr T., Tiranti V., Rustin P., Rak M., Prokisch H., Schiff M. (2019) Arabidopsis thaliana alternative dehydrogenases: a potential therapy for mitochondrial complex I deficiency? Perspectives and pitfalls. Orphanet Journal of Rare Diseases, 14, 236.
- Chadee A., Alber N.A., Dahal K., Vanlerberghe G.C. (2021) The complementary roles of chloroplast cyclic electron transport and mitochondrial alternative oxidase to ensure photosynthetic performance. Front Plant Sci, 12, 748204.
- Clifton R., Lister R., Parker K.L. Sappl P.G., Elhafez D., Millar A.H., Day D.A., Whelan J. (2005) Stressinduced co-expression of alternative respiratory chain components in Arabidopsis thaliana. Plant Mol. Biol., 58, 193–212.
- Elhafez D., Murcha M.W., Clifton R., Soole K.L., Day D.A., Whelan J. (2006) Characterization of mitochondrial alternative NAD(P)H dehydrogenases in Arabidopsis: intraorganelle location and expression. Plant and Cell Physiology.,47, 43–54.
- Escobar M.A., Franklin K.A., Svensson A.S., Salter M.G., Whitelam G.C., Rasmusson A.G. (2004) Light regulation of the Arabidopsis respiratory chain. Multiple discrete photoreceptor responses contribute to induction of type II NAD(P)H dehydrogenase genes. Plant Physiol., 136, 2710–2721.
- Garmash E.V. (2021) Role of mitochondrial alternative oxidase in the regulation of cellular homeostasis during development of photosynthetic function in greening leaves. Plant Biol., 23, 221-228.
- Garmash E.V., Velegzhaninov I.O., Ermolina K.V., Rybak A.V., Malyshev R.V. (2020) Altered levels of AOX1a expression result in changes in metabolic pathways in Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation. Plant Science., 291, 110332.
- Hao M.S., Jensen A.M., Boquist A.S., Liu Y.J., Rasmusson A.G. (2015) The Ca2+-regulation of the mitochondrial external NADPH dehydrogenase in plants is controlled by cytosolic pH. PLoS One, 10, e0139224.
- Ikkonen E.N., Grabelnykh O.I., Sherudilo E.G. (2020) Salicylhydroxamic acid-resistant and sensitive components of respiration in chilling-sensitive plants subjected to a daily short-term temperature drop. Russian J. Plant Physiol., 67, 60–67.
- Igamberdiev A.U., Bykova N.V. (2023). Mitochondria in photosynthetic cells: Coordinating redox control and energy balance. Plant Physiology, 191, 2104-2119.
- Igamberdiev A.U. (2020) Citrate valve integrates mitochondria into photosynthetic metabolism. Mitochondrion, 52, 218–230
- Jethva J., Lichtenauer S., Schmidt-Schippers R., Steffen-Heins A., Poschet G., Wirtz M., van Dongen J.T., Eirich J., Finkemeier I., Bilger W., Schwarzländer M., Sauter M. (2023) Mitochondrial alternative NADH dehydrogenases NDA1 and NDA2 promote survival of reoxygenation stress in Arabidopsis by safeguarding photosynthesis and limiting ROS generation. New Phytologist, 238, 96-112.
- Ježek P., Holendová B., Garlid K.D., Jabůrek M. (2018) Mitochondrial uncoupling proteins: subtle regulators of cellular redox signaling. Antioxidants Redox Signal., 29, 667-714.
- Korotaeva N.E., Shigarova A.M., Katyshev A.I., Fedoseeva I.V., Fedyaeva A.V., Sauchyn D.V., Shyshlova-Sokolovskaya A.M., Urbanovich O.Yu., Borovskii G.B. (2023) Effect of expression of the NDB2 heterologous gene of Arabidopsis thaliana on growth and respiratory activity of Nicotiana tabacum. Russian J. Plant Physiol., 70, 93.
- Laitz A.V., Acencio M.L., Budzinski I.G., Labate M.T., Lemke N., Ribolla P.E., Maia I.G. (2015) Transcriptome response signatures associated with the overexpression of a mitochondrial uncoupling protein (AtUCP1) in tobacco. PLoS One, 10, e0130744.
- Lima R.P.M., Nunes-Laitz A.V., Arcuri M.D.L.C., Campos F.G., Joca T.A., Monteiro G.C., Kushima H., Lima G.P.P, de Almeida R.L.F., Barreto P., de Godoy Maia I. (2022) The double knockdown of the mitochondrial uncoupling protein isoforms reveals partial redundant roles during Arabidopsis thaliana vegetative and reproductive development. Plant Science, 322, 111365.
- Liu S.S., Huang J.P. (1996) Coexistence of a reactive oxygen cycle with the Q cycle in the respiratory chain. A hypothesis for generating, partitioning, targeting and functioning of superoxide in mitochondria. In Parker, L, Traber, M.G., Xin W.J. (eds.), Natural antioxidants molecular mechanism and health effects. Champaign, IL, AOCS Press, pp. 513–529.
- Liu Y.J., Norberg F.E.B., Szilágyi A., De Paepe R., Åkerlund H.-E., Rasmusson A.G. (2008) The mitochondrial external NADPH dehydrogenase modulates the leaf NADPH/NADP+ ratio in transgenic Nicotiana sylvestris. Plant and Cell Physiology., 49, 251–263.
- Michalecka A.M., Svensson A.S., Johansson F.I., Agius S.C., Johanson U., Brennicke A., Binder S., Rasmusson A.G. (2003) Arabidopsis genes encoding mitochondrial type II NAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light. Plant Physiol., 133, 642–652.
- Møller I.M., Rasmusson A.G., van Aken O. (2021) Plant mitochondria — past, present and future. Plant J. 108. 912–959.
- Popov V.N., Syromyatnikov M.Y., Fernie A.R., Chakraborty S., Gupta K.J., Igamberdiev A.U. (2021) The uncoupling of respiration in plant mitochondria: keeping reactive oxygen and nitrogen species under control. Journal of Experimental Botany, 72, 793-807.
- Rasmusson A.G., Geisler D.A., Møller I.M. (2008) The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion, 8, 47–60.
- Ricquier D., Thibault J., Bouillaud F., Kuster Y. (1983) Molecular approach to thermogenesis in brown adipose tissue. Cell-free translation of mRNA and characterization of the mitochondrial uncoupling protein. J. Biol. Chem., 258, 6675–6677.
- Saha B., Borovskii G., Panda S.K. (2016) Alternative oxidase and plant stress tolerance. Plant signaling & behavior., 11, e1256530.
- Selinski J., Hartmann A., Deckers-Hebestreit G., Day D.A., Whelan J., Scheibe R. (2018a) Alternative oxidase isoforms are differentially activated by tricarboxylic acid cycle intermediates. Plant Physiol. 176, 1423–1432.
- Selinski J, Hartmann A, Kordes A, Deckers-Hebestreit G, Whelan J, Scheibe R. (2017) Analysis of posttranslational activation of alternative oxidase isoforms. Plant Physiol., 174, 2113–2127.
- Selinski J., Scheibe R., Day D.A., Whelan J. (2018b) Alternative oxidase is positive for plant performance. Trends Plant Sci., 23, 588–597.
- Smith C., Barthet M., Melino V., Smith,P., Day D., Soole K. (2011) Alterations in the mitochondrial alternative NAD(P)H dehydrogenase NDB4 lead to changes in mitochondrial electron transport chain composition, plant growth and response to oxidative stress. Plant cell physiol. 52, 1222-1237.
- Stepien P. Johnson G.N. (2018) Plastid terminal oxidase requires translocation to the grana stacks to act as a sink for electron transport. Proc. Natl. Acad. Sci. USA, 115, 9634–9639.
- Sweetlove L.J., Lytovchenko A., Morgan M., Nunes-Nesi A., Taylor N.L., Baxter C.J., Eickmeie I., Fernie A.R. (2006) Mitochondrial uncoupling protein is required for efficient photosynthesis. Proc. Natl. Acad. Sci. USA, 103, 19587–19592.
- Sweetman C., Selinski J., Miller T.K., Whelan J., Day D.A. (2022) Legume alternative oxidase isoforms show differential sensitivity to pyruvate activation. Front. Plant Sci. 12, 813691
- Sweetman C., Waterman C.D., Rainbird B.M., Smith P.M., Jenkins C.D., Day D.A., Soole K.L. (2019) AtNDB2 is the main external NADH dehydrogenase in mitochondria and is important for tolerance to environmental stress. Plant Physiol., 181, 774-788.
- Vanlerberghe G.C., Dahal K., Alber N.A., Chadee A. (2020) Photosynthesis, respiration and growth: A carbon and energy balancing act for alternative oxidase. Mitochondrion, 52, 197-211.
- Vercesi A.E, Borecký J, Maia I.G, Arruda P., Cuccovia I.M., Chaimovich H. (2006) Plant uncoupling mitochondrial proteins. Ann. Rev. Plant Biol. 57, 383–404.
- Wallström S.V., Florez-Sarasa I., Araújo W.L., Escobar M.A., Geisler D.A., Aidemark M., Lager I., Fernie A.R., Ribas-Carbó M., Rasmusson A.G. (2014a) Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in Arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport. Plant Cell Physiol., 55, 881-896.
- Wallström S.V., Florez-Sarasa I., Araújo W.L., Aidemark M., Fernández-Fernández M., Fernie A.R., Ribas-Carbó M., Rasmusson A.G. (2014b) Suppression of the external mitochondrial NADPH dehydrogenase, NDB1, in Arabidopsis thaliana affects central metabolism and vegetative growth. Mol. Plant, 7, 356–368.
- Wang D., Fu A. (2016) The plastid terminal oxidase is a key factor balancing the redox state of thylakoid membrane. Enzymes, 40, 143–171.
- Wanniarachchi V.R., Dametto L., Sweetman C., Shavrukov Y., Day D.A., Jenkins C.L., Soole K.L. (2018) Alternative respiratory pathway component genes (AOX and ND) in rice and barley and their response to stress. Int. J. Mol. Sci., 19, 915.
- Yerlikaya B.A., Ates D., Abudureyimu B., Aksoy E. (2022) Effect of climate change on abiotic stress response gene networks in Arabidopsis thaliana. In Prakash, C.S., Fiaz, S., Fahad, S. (Eds.) Principles and practices of OMICS and genome editing for crop improvement. Cham, Springer, pp. 149–172.