The role of amino acids in improvement in salt tolerance of crop plants
Автор: Abd el-samad H.M., Shaddad M.A.K., Barakat N.
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 3 т.6, 2010 года.
Бесплатный доступ
The present work has been performed to study the growth and metabolic activities of maize and broad bean plants which are shown to have a degree of sensitivity to salinity and to determine the role of amino acids proline or phenylalanine in increasing the salt tolerance of theses plants. Dry mass, water content, leaf area and photosynthetic pigment of maize and broad bean plants decreased with increasing salinity. These changes were accompanied with a drop in the contents of soluble sugars, soluble proteins and amino acids. This was accompanied by a marked increase in the proline content. When maize and broad bean plants sprayed with proline or phenylalanine the opposite effect was occurred, saccharides as well as proteins progressively increased at all sanitization levels and proline concentration significantly declined. Salinity significantly increased the sodium content in both shoots and roots of maize and broad bean plants, while a decline in the accumulation of K+, Ca++, Mg++ and P was observed. Amino acids treatments markedly altered the selectivity of Na+, K+, Ca++ and P in both maize and broad bean plants. Spraying with any of either proline or phenylalanine restricted Na+ uptake and enhanced the uptake of K+, K+/Na+ ratio, Ca++ and P selectivity in maize and broad bean plants.
Proline, phenylalanine, sprying, salinity, maize, broad bean
Короткий адрес: https://sciup.org/14323488
IDR: 14323488
Список литературы The role of amino acids in improvement in salt tolerance of crop plants
- Abebe, T., Guenzi, A. C., Martin, B. and Cushman, j. C. (2003). Tolerance of mabbitol accumulating transgenic w heat to water stress and salinity. Plant Physiology. 131: 1748-1755.
- Bates, L. S. Waldern, R. P., Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant soil. 39: 205-207.
- Botella, M. A., Martinez, V.; Pardines, J.; Cerda, A. (1997). Salinity induced potassium deficiency in maize plants. J. Plant Physiology. 150: 200-205.
- Cramer, M. D., Lauchi, A. and Polito, V. S. (1985). Displacement of Ca+2 by N from the plasmalemma of root cells. A primary response to salt stress? Plant Physiol. 79: 207-211.
- Cuin,. T. A., and Shabala, S. (2005). Exigenously supplied compatible rapidly ameliorate NaClinduced potassium efflux from barley roots. Pant and Cell Physiology. 46: 1924-1933.
- Delauney, A. J. and Verma, D. P. (1993). Proline biosythesis and osmoregulation in plants. The Plant journal. 4: 215-223.
- Delauney, A. J., Hu, C. A., Kishor, P. B. and verma, D. P. (1993). coloning of ornithine deltaaminotrans from Vigna aconitifolia by trans complementation in Escherichia coli and regulation of proline biosynthesis. Journal of Biological Chemisry. 268, 18673-18678.
- Devitt, D. A., Ktolzy, L., Labanauskas, C. K. (1987). Impact of potassium, sodium and salinity on the protein and free amino acid content of wheat grain. Plant Soil. 103: 101-109.
- Fales, D. R (1951). The assimilation and degradation of carbohydrates of yeast cells. J. Biol. Chem. 193: 113-118
- Flowers, T. J., Hajibagheri, M. A., Yeo, A. R. (1991). Ion accumulation in the cell walls of rice plants growing under salineconditionsevidence for Oertli hypothesis. Plant, Cell and Environment. 14: 319-325.
- Girma, F. S., Krieg, D. R., and Daniel, R. K. (1992). Osmotic adjustment in Sorghum. 1. Mechanisms of diurna osmotic potential changes. Plant Physiol. 99: 577-582.
- Girma, F. S., Krieg, D. R., and Daniel, R. K. (1992). Osmotic adjustment in Sorghum. 1. Mechanisms of diurna osmotic potential changes. Plant Physiol. 99: 577-582.
- Grattan, S. R. and Grieve, C. M. (1999). Salinitymineral nutrient relations in horticultural crops. 78: 127-157.
- Hamdia, M. A. and Shadad, M. A. K. (1997). Salt tolerance of soybean cultivars. Biologia Plantarum. 39: 263-269.
- Hamdia, M. A., and El-Komy, M. H. A. (1998). Effect of salinity, gibberllic acid and Azospirillum inoculation on growth and nitrogen uptake of Zea mays. Biologia Plantarum. 40: 109-120.
- Hamdia, M. A. (1987). Response of some plants to the interactive effects of salinity and amino acids. Thesis in El-Minia University, Faculty of science, Botany department. 1-127.
- Hamdia, M. A. Shaddad, M. A. K. and Doaa, M. M. (2004). Mechanisms of salt tolerance and interactive effect of Azospirillum brasilense inoculation on maize cultivars grown under salt stress. Plant Growth Regulation. 44: 165-174.
- Hamdia, M. A.and El-komy H. M. (1998). Effect of salinity, gibberellic acid and Azospirillum inoculation on growth and nitrogen uptake of Zea mays. Boil Plant. 109: 109-120.
- Hernandez, S., Deleu, C. and Larrher, F. (2000). Proline accumulation by tomato tissue in response to sailinty. 6: 551-557.
- Huang, J. Hirji, R. Adam, L., Rozwadowski, K. L., Hammerlindl. J. K., Keller, W. A., Selvaraj, G. (2000). Engineing of glycinbetaine production toward enhancing strss tolerance in plants: metalimitation. Plant Physiology. 122: 747-756.
- Garacia, J. R., Estrada, J. A., Gonzalez, M. T., Ayala C. R. and Moreno D. M. (2010). Exogenous application of growth regulators in snap bean under water stress and salinity. Journal of Stress Physiology & Biochemistry. 5, 13, 21.
- Katerji, N., van Hoorn, j. W., Hamdy, A. and Mastrorilli, M. (2000). Salt tolerance classification of crops according to soil salinity and water stress day index. Agricultural Water Management. 43: 99-109.
- Katerji, N., van Hoornm J. W., Hamdy, A., mastrorilli, M. Oweis, T. and Malhotra, R. S. (2001). response to soil salinity of two chickpea varieties differeing in drought tolerance. 50: 88-96.
- Kavi kishor, P. B., Hong, Z., Miao, G. H., Hu, C. A.A., Verma D. P. S. and Verma, D. P. S. (1995). Overexpression 1-P carboxylate synthetase increase proline production and confers osmotolerance in transgenic. Plant Physiology. 108: 1387-1394.
- Levitt, J. (1980). Salt stress, pp. 365-454. IV; Respnses of plants to environmental stress. Volum II, Academic Press, New York. NY.
- Lowry, O. H, Rosenbrough, N. J. Farr, A. L. Ramdall, R. J. (1951). Protein measurement with the Folin Phenol reagent. J. Biol. Chem. 193: 265-275,.
- Manetas, (1990). Are-examination of NaCl effects on phosphenol pyruvate carboxylase at high physiological, enzyme concentration. Physiol. Plantarum. 78: 225-229.
- Maruyama, K., Sakama, Y., Kasuga, M., Ito, Y., Seiko, M., Goda, H., Shimada, Y., Yoshida, S. and Shinozaki, K. (2004). Identification of coldinducible downstream genes of the Arabidopsis, DREB1A/CBF3 transcriptional factor using two microarry systems. The Plant Journal. 38: 982-993.
- Moore, S. and Stien, W. (1948). Photometric ninhydrin method for use in the chromatography of amino acids. J. Biol. Chem. 17: 367-3.
- Munns, R. (1993). Physiological processes limiting plant growth in saline soils: some dogmas and halophyted. Plant, Cell and environment. 16: 15-24.
- Munns, r. (2002). Comparative physiology of salt and water stress. Plant, Cell and environment. 25: 239-167.
- Munns, R., Hare, R. A., Games, R. A, Rebetzke, G. J. (2000). Genetic variation for improving the salt tolerance of durum wheat. Austalian. Journal of Agricultural Research, 51: 69-74.
- Najafi, F., Nejad R. A. and Ali M. S. (2010). The effects of salt stress on certain physiological parameters in summer savory (Satureja hortensis L.) plants. Journal of Stress Physiology & Biochemistry, Vol. 6 No. 1 2010, pp. 13-21
- Ono, Y., Seki, M., Nanjo, T., Narusaka, M., Fujita, M., Satou, M., Sakurai, T., Ishida, J. (2003). Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca 7000 full-length cDNA microrray. The Plant Journal. 34: 868-887.
- Quayum, H. A., Panaullah, G. M., and Haque, M. S. (1991). A comparative study of osmotic ion effects of salinity on two rice varietie, Okkali and Mi 48. Bengaladesh, J. Bot. 20: 137-142.
- Rabbani, M. A., Maruyama, K., Abe, H., Khan, M. A., Katsura, K., Yto, Y., Yoshiwara, K., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K, (2003). Monitoring expression profiles of rice genes under cold, high salinity stresses and abscisic acid application using cDNA microarray and -. RNA-gel bolt analysis. Plant Physiology. 133: 1755-1767.
- Rai, S. P., Luthra, R. and Kumar, S. (2003). Salttolerant mutants in glycophytic salinity response (GRS) genes in Catharanthus roseus. Theor. Appl. Genet. 106: 221-230.
- Roosens, N. h., Thu, T. T., Iskandar, H. M. and Jacobs, M. (1998): Isolation of ornithine -deltaamicDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Pysiology. 117.
- Roosens, N. H., Thu, T. T., Iskandar, H. M., Jacobs, M. (1998). Isolation of the ornithine-deltaamintransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiology. 117: 236-271.
- Schwarzenbach, G., Biedermann, W. (1948). Komplexone X. Erdalkalikomplexe von o,6-Dioxyazofarbstoffen,. Helv. Chim. Acta. 31: 678-687,.
- Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A.and Sakurai T. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high-salinity stresses using a full-length cDNA microarray. The Plant Journal 31: 279-292.
- Shaddad, M. A. and Heikal, M. M. (1982). Interactive effect of gibberellic acid and salinity on kidney bean. Bull. Fac. Sci. Assiut Univ. 11: 135-149.
- Silveira, J. A., Viegas Rde, A., da Rocha, I. M., Moreira, A. C., Moreira Rde, A. and Oliveira, J. T. (2003). Proline accumulation and glutamine synthetase activity and increased by saltinduced proeolysis in cashew leaves. J. Plant Physiol. 160: 115-123.
- Thakur,P. S. and Rai, V. K. (1985). Exogenously supplied amino acids and water deficits in Zea mays cultivars. Biologia Plantarum. 27: 458-461.
- Tester, M. and Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany. 91: 503-527.
- Watson, D. J. and Watson M. A. (1953). Studies in potatoes agronomy. 1-Effect of variety seed size and spacing on growth, development and yield. J. Agr. Sci. 66: 249-249.
- Williams, V., Twine, S. (1960). Flame photometeric method for sodium, potassium, and calcium. In: Paech, K., Tracey, M. V. (ed): Modern Methods of Plant Analysis. Vol. Pp. 3-5. Springer-Verlag, Berlin.
- Woods, and Mellon, (1941). Chlorostannous reduced molybdophosphoric blue color method, in sulphuric acid system. In Soil Chemical Analysis by Jackson, M. L. (1985). Printic-Hall International, Inc., London.
- Yamada, M., Morishita, H. and Urano, K. (2005). Effects of free proline accumulation in petunias under drought stress. Journal of Experimental Botany. 417: 1975-1981.