The speed electromagnetic wave propagation in the snow-ice underlying surface

Бесплатный доступ

The results calculations the electromagnetic wave propagation velocity in the snow-ice cover depending on the density, the proportion liquid water content, and the propagation speeds the electromagnetic wave in dry snow, dry firn, and dry ice vary very markedly depending on the proportion liquid water content, the preferred orientation, and the shape ice and air structure are presented. The inclusions in the snow.The performed estimates the complex relative permittivity the medium that determines the speed propagation electromagnetic waves show a noticeable influence the density, the proportion liquid water content and the structure the underlying surface (snow, firn, ice), which allows identifying the layers the underlying surface in order to remotely determine the possibility landing a helicopter-type aircraft on an unprepared site with snow-ice cover.Shown, when the portion the water content in the medium is equal to zero, which is typical for negative temperatures, the speed propagation electromagnetic waves in the medium will depend on the density the medium and structure the dry ice in a small range of 1 m/µs temperature. In dry snow, vertically and horizontally elongated or spherical inclusions make a significant contribution to the change in the speed propagation the electromagnetic wave. At zero temperature, in the frequency range of 2 ... 8 GHz, the share water content in the medium, the density and structure the medium will play a determining role in the speed propagation an electromagnetic wave in the medium.The purpose this article is to determine the change ranges speed propagation electromagnetic waves in snow-ice the underlying surface depending on the density, structure, water content to restore the structure the snow and ice according to radar sensing, a more accurate determination the depth snow and thickness ice cover used in the assessment the possibility the safe landing an aircraft the helicopter type on an unprepared ground with snow-ice cover.

Еще

Snow cover, ice cover, underlying surface, dielectric permittivity, electromagnetic wave propagation speed

Короткий адрес: https://sciup.org/146282225

IDR: 146282225   |   DOI: 10.17516/1999-494X-0313

Список литературы The speed electromagnetic wave propagation in the snow-ice underlying surface

  • Машков В.Г., Малышев В.А. Способ выбора площадки для посадки воздушного судна вертолетного типа. Пат. 2707275 Российская Федерация, МПК G01S 13/94; заявитель и патентообладатель ВУНЦ ВВС «ВВА» (г. Воронеж) 2019100117; заявл. 09.01.2019; опубл. 26.11.2019 [Mashkov V.G., Malyshev V.A. Method selecting a landing site for a helicopter - type aircraft. Pat. 2707275 Russian Federation, IPC G01S 13/94; applicant and patent holder VUNTS VVS «VVA» (Voronezh) 2019100117; declared 09.01.2019; publ. 26.11.2019 (in Russian)]
  • Котляков В.М., Мачерет Ю.Я., Сосновский А.В., Глазовский А.Ф. Скорость распространения радиоволн в сухом и влажном снежном покрове. Лед и снег. М.: Институт
  • географии РАН, 2017, 57(1), 45-56 [Kotlyakov V.M., Macheret Yu.Ya., Sosnovsky A.V., Glazovsky A.F. Speed radio wave propagation in dry and wet snow cover. Ice and snow. Moscow, Institute geography the Russian Academy of Sciences, 2017, 57(1), 45-56 (in Russian)]
  • Dowdeswell J.A., Evans S. Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding. Reports on Progress in Physics, 2004, 67, 1821-1861
  • Мачерет Ю.Я. Радиозондирование ледников. М.: Научный мир, 2006, 392 с. [Macheret Yu. Ya. Sounding of glaciers. Moscow, Scientific world, 2006, 392 р. (in Russian)]
  • Глазовский А.Ф., Мачерет Ю.Я. Вода в ледниках. Методы и результаты геофизических и дистанционных исследований. М.: ГЕОС, 2014, 528 с. [Glazovsky A.F., Macheret Yu.Ya. Water in glaciers. Methods and results of geophysical and remote research. Moscow, GEOS, 2014, 528 р. (in Russian)]
  • Беховых Л.А., Макарычев С.В., Шорина И.В. Основы гидрофизики. Барнаул: Издательство АГАУ, 2008, 172 с. [Begovich L.A., Makarychev S.V., Shorina I.V. Fundamentals hydrophysics. Barnaul, Publishing house of the Altai state agrarian University, 2008, 172 р. (in Russian)]
  • Основы измерения диэлектрических свойств материалов. Заметки по применению. М.: Российское представительство Agilent Technologies, 2010, 32 с. [Fundamentals measuring the dielectric properties materials. Notes on the application. M., Russian representative office Agilent Technologies, 2010, 32 р. (in Russian)]
  • Рекомендация МСЭ-R P.527-4. Электрические характеристики земной поверхности. Серия Р. Распространение радиоволн. М.: Международный союз электросвязи, 2017, 19 с. [Recommendation ITU-R P. 527-4. Electrical characteristics the earth's surface. Series R. radio wave Propagation. Moscow, international telecommunication Union, 2017, 19 р. (in Russian)]
  • Мосин О.В. Диэлектрические свойства воды и льда [Электронный ресурс] - Режим доступа: http://www.o8ode.ru/article/krie/Dielectric_properties_of_water_and_ice - Заглавие с экрана. [Mosin O.V. Dielectric properties of water and ice [Electronic resource] - Access: http://www. o8ode.ru/article/krie/Dielectric_properties_of_water_and_ice (in Russian)]
  • Плотность воды, теплопроводность и физические свойства H2O [Электронный ресурс] - Режим доступа: http://thermalinfo.ru/svojstva-zhidkostej/voda-i-rastvory/ teploprovodnost -i-plotnost-vody-teplofizicheskie-svojstva-vody-h2o - Заглавие с экрана. [Water density, thermal conductivity and physical properties of H2O [Electronic resource] - Access: http://thermalinfo.ru/svojstva-zhidkostej/voda-i-rastvory/teploprovodnost-i-plotnost-vody-teplofizi cheskie- svojstva-vody-h2o (in Russian)]
  • Арабаджи В.С. Электризация снега в метелях. Загадки простой воды. [Электронный ресурс] - Режим доступа: http://class-fizika.narod.ru/w23.htm - Заглавие с экрана. [Arabadji V.S. The Electrification of snow in the blizzards. Riddles of simple water. [Electronic resource] - Access: http://class-fizika.narod.ru/w23.htm (in Russian)]
  • Фролов А.Д., Мачерет Ю.Я. Оценка содержания воды в субполярных и теплых ледниках по данным измерений скорости распространения радиоволн. МГИ, 1998, 84, 148-154 [Frolov A.D., Macheret Yu.Ya. Assessment water content in Subpolar and warm glaciers according to measurements the speed radio wave propagation. MGI, 1998, 84, 148-154 (in Russian)]
  • Frolov A.D., Macheret Yu.Ya. On dielectric properties of dry and wet snow. Hydrological processes, 1999, 13, 1755-1760.
  • Denoth А. On the calculation of the dielectric constant of snow. Rencontre internationale sur la neige et les avalanches. Association nationale pour 1'etude de la neige et des avalanches, 1978, 61-70.
  • [15] Denoth A. Effect of grain geometry on electrical properties of snow at frequencies up to 100 MHz. Journ. of Applied Physics, 1982, 53, 1(11), 7496-7501.
  • Denoth A. Snow dielectric measurements. Advance Space Research, 1989, 9(1), 233-243.
  • Denoth А., Schittelkopf Н. Mixing formulas for deter mining the free water content of wet snow from mea surements of the dielectric constant. Zeitschriftfur letscherkunde und Glazialgeologie, 1978, 14(1), 73-80.
  • Matzler C. Microwave permittivity of dry snow. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2), 573-581.
  • Stiles W.H., Ulaby F.T. Dielectric properties of snow. Proc. of the Workshop on the Properties of Snow, Snowbird, Utah, April 8-10, 1981. U.S. Army Cold Regions Research and Engineering Laboratory. Special report. № 82-18. United States, 91-103.
  • Богородицкий В.В., Пасынков В.П. Материалы в радиоэлектронике. М.-Л.: Мосэнергоиздат, 1961, 352 с. [Bogoroditsky V.V., Pasynkov V.P. Materials in Radioelectronics. M.L., Gosenergoizdat, 1961, 352 р. (in Russian)]
  • Looyenga H. Dielectric constants of heterogeneous mixture. Physica, 1965, 31(3), 401-406.
  • Мачерет Ю.Я. Оценка содержания воды в ледниках по гиперболическим отражениям. Материалы гляциологических исследований. Институт географии РАН, 2000, 89, 3-10 [Macheret Yu.Ya. Assessment water content in glaciers by hyperbolic reflections. Materials glaciological research. Institute geography the Russian Academy Sciences, 2000, 89, 3-10 (in Russian)]
  • Robin G. de Q. Velocity radio waves in ice by means interferometric technique. Journ. Glaciology, 1975, 15(73), 151-159.
  • Tiuri M., Sihvola A., Nyfors E., Hillikainen M. The complex dielectric constant of snow using microwave techniques. IEEE Journ. of Oceanic Engineering, 1984, OE-9(5), 377-382.
  • Kovacs A., Gow A., Morey R.M. A reassessment the in-situ dielectric constant polar firn. CREEL Report 93-26, 1993, 1-29.
  • Macheret Yu.Ya. Estimation of absolute water content in Spitsbergen glaciers. Polar Research, 2000, 19(2), 205-216.
  • Bradford J.H., Nichols J., Mikesell D., Harper J. Continuous profiles of electromagnetic velocity and water content in glaciers: an example from Bench glacier, Alaska, USA. Annals Glaciology, 2009, 50(51), 1-9.
  • Giordano S. Order and disorder heterogeneous material microstructure: electric and elastic characterization dispersions pseudo-oriented spheroids. Intern. Journ. Engineering Science, 2005, 43, 1033-1058.
  • Bradford J.H., Nichols J., Harper J.T., Meirbachtol T. Compressional and EM velocity anisotropy in a temperate glacier due to basal crevasses, and implications for water content estimation.
Еще
Статья научная