The strategy of parallel pursuit for differential game of the second order

Автор: Doliyev O.B., Mirzamahmudov U.A.

Журнал: Мировая наука @science-j

Рубрика: Основной раздел

Статья в выпуске: 6 (87), 2024 года.

Бесплатный доступ

In this work is considered a differtial game of the second order, when control functions of the players satisfies geometric constraints. The proposed method substantiates the parallel approach strategy in this differential game of the second order. The new sufficient solvability conditions are obtained for problem of the pursuit.

Differential game, geometric constraint, evader, pursuer, strategy of the parallel pursuit, acceleration

Короткий адрес: https://sciup.org/140307133

IDR: 140307133

Список литературы The strategy of parallel pursuit for differential game of the second order

  • Gronwall T.H. Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math., 1919, 20(2): 293-296. https://zbmath.org/authors/gronwall.thomas
  • Azamov A.A. About the quality problem for the games of simple pursuit with the restriction, Serdika. Bulgarian math. spisanie, 12, 1986, - P.38-43. https://www.researchgate.net/publication/268829581_On_the_quality_problem_ for_simple_pursuit_games_with_constraint
  • Azamov A.A., Samatov B.T. n-Strategy. An Elementary introduction to the Theory of Differential Games. - T.: National Univ. of Uzb., 2000. - 32 p. https://cajmtcs.centralasianstudies.org/index.php/CAJMTCS/article/view/89
  • Azamov A.A., Samatov B.T. The n-Strategy: Analogies and Appli-cations, The Fourth International Conference Game Theory and Management, June 28-30, 2010, St. Petersburg, Russia, Collected papers. - P.33-47. https://zenodo.org/records/7495576
  • Azamov A., Kuchkarov A.Sh. Generalized 'Lion Man' Game of R. Rado, Contributions to game theori and management. Second International Conference "Game Theory and Management" - St.Petersburg, Graduate School of Management SPbU. - St.Petersburg, 2009. - Vol.11. - P. 8-20. https://dspace.spbu.ru/bitstream/11701/1233/1/Vol2.pdf
  • Azamov A.A., Kuchkarov A.Sh., Samatov B.T. The Relation between Problems of Pursuit, Controllability and Stability in the Large in Linear Systems with Different Types of Constraints, J.Appl.Maths and Mechs. - Elsevier. -Netherlands, 2007. - Vol. 71. - N 2. - P. 229-233. https://www.researchgate.net/publication/245144708_The_relation_between_pr oblems_of_pursuit_controllability_and_stability_in_the_large_in_linear_system s_with_different_types_of_constraints
  • Barton J.C, Elieser C.J. On pursuit curves, J. Austral. Mat. Soc. B. - London, 2000. - Vol. 41. - N 3. - P. 358-371.
  • Borovko P., Rzymowsk W., Stachura A. Evasion from many pursuers in the simple case, J. Math. Anal. And Appl. - 1988. - Vol.135. - N 1. - P. 75-80.
  • Chikrii A.A. Conflict-controlled processes, Boston-London-Dordrecht: Kluwer Academ. Publ., 1997, 424 p.
  • Fleming W. H. The convergence problem for differential games, J. Math. Anal. Appl. - 1961. - N 3. - P. 102-116.
  • A. Friedman. Differential Games, New York: Wiley, 1971, - 350 p.
  • Hajek O. Pursuit Games: An Introduction to the Theory and Appli-cations of Differential Games of Pursuit and Evasion. - NY.:Dove. Pub. 2008. - 288 p.
  • Isaacs R. Differential Games, J. Wiley, New York-London-Sydney, 1965, 384p.
  • Ibragimov G.I. Collective pursuit with integral constrains on the controls of players, Siberian Advances in Mathematics, 2004, v.14, No.2, - P.13-26.
  • Ibragimov G.I., Azamov A.A., Khakestari M. Solution of a linear pursuit-evasion game with integral constraints, ANZIAM Journal. Electronic Supplement. - 2010. - Vol.52. - P. E59-E75.
  • Krasovskii A.N., Choi Y.S. Stochastic Control with the Leaders-Stabilizers. -Ekaterinburg: IMM Ural Branch of RAS, 2001. - 51 p.
  • Krasovskii A.N., Krasovskii N.N. Control under Lack of Information. - Berlin etc.: Birkhauser, 1995. - 322, p.
Еще
Статья научная