The study of the flow in the vapour channel of short linear heat pipes

Бесплатный доступ

E-mail: seryakovav@yandex.ru The results of studies of flow of moist vapour in Laval-like vapour channels of short linear heat pipes (HPs) are pre- sented. The increase in heat transfer coefficient of short linear HPs, intended for creation of the cooling systems of heat-stressed designs of spacecraft, is carried out by making the HPs vapour channel forms similar to the shape of the Laval-like nozzle. Comparison of the heat transfer coefficients of short HPs with the standard cylindrical vapour channel and the channel, made in the form of the Laval-like nozzle with the equality of all dimensions, flat evaporator and the same amount of the working fluid, shows that the HPs with the vapour channel in the form of the Laval-like nozzle exceeds the heat transfer characteristics of the standard HPs with a cylindrical vapour channel under high ther- mal loads. The study of the flow and condensation in such shaped vapour channels of the short HPs at high thermal loads gives an opportunity to analyze in detail the advantages of using such HPs and make the conclusion about the necessity of wide introduction of such HPs for the cooling systems of the spacecraft. Capacitive sensors were addition- ally installed in cooled top covers of the HPs, and electromagnetic pulses with a frequency of 100 kHz were supplied to them from the external generator. At heating the HPs evaporator, starting from a certain thermal power threshold value, electromagnetic pulses became modulated. It is related to the formations of the boiling process in the capillary- porous evaporator and large amount of vapour over it and its discontinuous distribution. It was discovered that the frequencies of the pulsations are more and they occur at lower values of heat load at the evaporator in the HPs with a vapour channel of a Laval-like nozzle, compared to the HPs with the standard cylindrical vapour channel with equal overall dimensions.

Еще

Heat pipes, laval nozzle, pulsation, heat transfer coefficient

Короткий адрес: https://sciup.org/148177739

IDR: 148177739

Список литературы The study of the flow in the vapour channel of short linear heat pipes

  • Pat. 4921041 US. Structure of Heat Pipe/Akachi H. 1990.
  • Tong B. Y., Wong T. N., Ooi K. T. Closed-loop pulsating heat pipe//Applied Thermal Engineering. 2001. Vol. 21, № 18. P. 1845-1862.
  • Experimental Investigation and Performance Evaluation of a Closed Loop Pulsating Heat Pipe/R. Naik //Journal of Applied Fluid Mechanics. 2013. Vol. 6, № 2. P. 267-275.
  • Gupta A. K., Lilley D., Sayred N. Swirling flow. New York: Wiley, 1987. 588 p.
  • Seryakov A. V. Pulsation flow in the vapour channel of low temperature range heat pipes//Direct Research Journal of Engineering and Information Technology. 2014. Vol. 2(1). P. 1-10.
  • Seryakov A. V. Pulsation flow in the vapour channel of short low temperature range heat pipes//International Journal on Heat and Mass Transfer Theory and Application. 2014. Vol. 2, № 2. Pp. 40-49.
  • Seryakov A. V., Ananiev V. I., Orlov A. V. Condensation research in the short low-temperature range heat pipes//Proceedings of the 9th Minsk International Seminar of Heat Pipes, Heat Pumps, Refrigerators, Power Sources. (7-10 September 2015, Minsk). Vol. 2. P. 168-176.
  • Seryakov A. V., Ananiev V. I. Condensation research in the short low-temperature range heat pipes//Proceedings of the VIII Intern. Symposium on Turbulence, Heat and Mass Transfer. (15-18 September 2015, Sarajevo, Bosnia and Herzegovina). Begell House Inc. P. 693-696.
  • Пат. 2431101 RF, F 28 D 15/00. Способ заполнения тепловых труб/Серяков А. В. Опубл. 10.10.2011, Бюл. 28.
  • Полезная модель 152108. Емкостный датчик для определения толщины слоя жидкости/Серяков А. В. Опубл. 27.06.2015, Бюл. № 18/2015.
  • Серяков А. В., Конькин А. В., Белоусов В. К. Применение струйного парового сопла в тепловых трубах среднетемпературного диапазона//Вестник СибГУ. 2012. Вып. 1(41). C. 142-147.
  • Seryakov A. V. Velocity measurements in the vapour channel of low temperature range heat pipes//International Journal of Engineering Research & Technology. 2013. Vol. 2, № 8. P. 1595-1603.
  • Faghri A. Heat Pipe Science and Technology. Washington: Taylor and Francis, 1995.
  • Варгафтик Н. Б. Справочник по теплофизическим свойствам газов и жидкостей. М.: Физматгиз. 1963. 708 с.
  • Таблицы физических величин: cправочник/под ред. акад. И. К. Кикоина. Атомиздат, 1976. 1008 с.
  • Lee R., Reges J., Almenas K. Size and number density change of droplet populations above front during reflood//International Journal of Heat and Mass Transfer. 1984. Vol. 27, № 4. Р. 573-585.
Еще
Статья научная