The technology for detecting weeds in agricultural crops based on vegetation index VARI (Planetscope)
Автор: Erunova Marina G., Pisman Tamara I., Shevyrnogov Anatoliy P.
Журнал: Журнал Сибирского федерального университета. Серия: Техника и технологии @technologies-sfu
Статья в выпуске: 3 т.14, 2021 года.
Бесплатный доступ
The aim of the work is to develop techniques for detecting weediness in agricultural crops based on the use of the VARI vegetation index, calculated from the PlanetScope satellite data. The territories of the Krasnoyarsk Agricultural Research Institute of the Federal Research Center of the Krasnoyarsk Science Center of SB RAS near the village Minino (Central Siberia, Krasnoyarsk Region) were used as the object of the research. To calculate the vegetation index VARI of grain crops, the algorithm for receiving and processing PlanetScope satellite data was developed. On its basis, a map of the spatial distribution of the VARI index for wheat crops with various degrees of weediness was made. According to the satellite data of PlanetScope (VARI), possibility to interpret the areas of wheat sowing with a high and low degree of weediness during the growing season is shown. It was revealed that the VARI value of wheat crops with a low degree of infestation is greater than the VARI value of wheat crops with a high degree of infestation.
Algorithm, wheat, crops weediness
Короткий адрес: https://sciup.org/146282226
IDR: 146282226 | DOI: 10.17516/1999-494X-0314
Список литературы The technology for detecting weeds in agricultural crops based on vegetation index VARI (Planetscope)
- Pflanz M., Nordmeyer H., Schirrmann M. Weed mapping with UAS Imagery and a Bag of Visual Words based image classifier. Remote Sensing, 2018, 10(10), 1530 (doi: 10.3390/rs10101530)
- Wu B., Meng J., Li Q., Yan N., Du X., Zhang M. Remote sensing-based global crop monitoring: experiences with China's Crop Watch system. International Journal of Digital Earth, 2014, 7(2), 113137 (doi: 10.1080/17538947.2013.821185)
- Lamba D.W., Brown R.B. PA - precision agriculture: remote-sensing and mapping of weeds in crops. Journal of Agricultural Engineering Research, 2001, 78(2), 117-125 (doi: 10.1006/ jaer.2000.0630)
- Martin M.P., Barreto L., Riaco D., Fernandez-Quintanilla C., Vaughan P. Assessing the potential of hyperspectral remote sensing for the discrimination of grassweeds in winter cereal crops. International Journal of Remote Sensing, 2011, 32(1), 49-67 (doi: 10.1080/01431160903439874)
- Rembold F., Atzberger C., Savin I., Rojas O. Using low resolution satellite imagery for yield prediction and yield anomaly detection. Remote Sensing, 2013, 5(4), 1704-1733 (doi: 10.3390/rs5041704)
- Vrindts E.J., De Baerdemaeker J., Ramon H. Weed detection using canopy reflection. Precision Agriculture, 2002, 3(1), 63-80 (doi: 10.1023/A:1013326304427)
- Pisman T.I., Erunova M.G., Botvich I.Yu., Shevyrnogov A.P. Spatial distribution of NDVI seeds of cereal crops with different levels of weediness according to PlanetScope satellite data. J. Sib. Fed. Univ. Eng. Technol, 2020, 13(5), 578-585 (doi: 10.17516/1999-494X-0247)
- Gitelson A., Stark R., Grits U., Rundquist D.C. Vegetation and Soil Lines in Visible Spectral Space: A Concept and Technique for Remote Estimation of Vegetation Fraction. Int. J. Remote Sens., 2002, 23, 2537-2562
- Erunova M.G., Shpedt A.A., Trubnikov Y.N., Yakubailik O.E. Geospatial database for digitalization of agriculture of the Krasnoyarsk territory. IOP Conference Series: Earth and Environmental Science. Krasnoyarsk Science and Technology City Hall of the Russian Union of Scientific and Engineering Associations, 2019, 315(3), 32022
- Thorp K., Tian L.F. A review on remote sensing of weeds in agriculture. Precision Agriculture, 2004, 5(5), 477-508 (doi: 10.1007/s11119-004-5321-1)
- Petit S., Boursault A., Guilloux M., Munier-Jolain N., Reboud X. Weeds in agricultural landscapes. A review. Agronomy for Sustainable Development, 2011, 31(2), 309-317 (doi: 10.1051/ agro/2010020)