The toxic effects of nickel and cadmium on germination, seedling growth and biochemical contents of Rauwolfia serpentina Benth. ex Kruz

Автор: Vyas Milvee K.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 1 т.18, 2022 года.

Бесплатный доступ

Effects of different concentrations of nickel sulphate and cadmium nitrate on germination, root and shoot growth, dry weight and changes in contents of total sugar, protein and pigments of this plant was studied. The study shows that the lower concentration of nickel has no effect or beneficial effect but application of higher level of nickel has an adverse effect. Cadmium reduced the percentage of germination, root and shoot length and dry weight of root and shoot. The content of pigments, total sugar and protein were also affected by cadmium nitrate and their contents were decreased.

Germination and growth, heavy metals, medicinal plant, nickel and cadmium toxicity, rauwolfia serpentina benth. ex kruz

Короткий адрес: https://sciup.org/143178340

IDR: 143178340

Список литературы The toxic effects of nickel and cadmium on germination, seedling growth and biochemical contents of Rauwolfia serpentina Benth. ex Kruz

  • Ahmad I., Akhtar M.J., Zahir Z.A. and Jamil A. (2012) Effect of cadmium on seed germination and seedling growth of four wheat (Triticum aestivum L.) cultivars. Pak. J. Bot., 44(5), 1569-1574.
  • Ahmad M.S.A. and Ashraf M. (2011) Essential roles and hazardous effect of nickel in plants. Rev. Environ. Contam. Toxicol., 214, 125-67. doi: https://doi.org/10.1007/978-1-4614-0668-6_6
  • Akar M. and Atis I. (2018) The effect of priming pretreatments on germination and seedling growth in perennial ray grass exposed to heavy metal stress. Fresenius Environ. Bull., 27, 6677-6685.
  • Antonkiewicz J., Jasiewicz C., Koncewicz-Baran M. and Sendor R. (2016) Nickel bioaccumulation by the chosen plant species. Acta Physiol. Plant., 38, 1-11. doi: https://doi.org/10.1007/s11738-016-2062-5
  • Azmi M.B. and Qureshi S.A. (2012) Methanolic root extract of Rauwolfia serpentina Benth. Improves the glycemic, antiatherogenic, and cardioprotective indices in alloxan - induced diabetic mice. Adv. Pharmacol. Pharma. Sci., doi: https://doi.org/10.1155/2012/376429
  • Baccouch S., Chaoui A. and El Ferjani E. (2001) Nickel toxicity induces oxidative damage in Zea mays roots. J. Plant Nutr., 24, 1085-1097. doi: https://doi.org/10.1081/PLN-100103805
  • Batool S. (2018) Effect of nickel toxicity on growth, photosynthetic pigments and dry matter yield of Cicerarietinum L. Asian J. Agric. Biol., 6, 143-148.
  • Bhardwaj P., Chaturvedi A.K. and Prasad P. (2009) Effect of enhanced lead and cadmium in soil on physiological and biochemical attributes of Phaseolus vulgaris L. Nat. Sci., 7, 63-75.
  • Bhattarai S., Chaudhary R.P. and Taylor R.S.L. (2009) Ethno-medicinal plants used by the people of Nawalparasi District, Central Nepal. Our Nat., 7, 8299. doi: https://doi.org/10.3126/0N.V7I1.2555
  • Blum W.H. (1997) Cadmium uptake by higher plants. In: proceedings of extended abstracts from the fourth international conference on the biogeochemistry of trace elements. University of California, Berkeley, USA, pp. 109-110.
  • Brown P.H., Barker A.V. and Pilbeam D.J. (2007) Nickel. In: Barker AV, Pilbeam DJ (Eds). Handbook of Plant Nutrition. Taylor & Francis Group, LCC, Boca Raton, London, New York, pp. 395-410.
  • Chen C., Huang D. and Liu J. (2009) Functions and toxicity of nickel in plants: recent advances and future prospects. Clean-Soil Air Water, 37, 304-313. doi: https://doi.org/10.1002/clen.200800199
  • Czuba M. and Ormond D. (1974) Effect of cadmium and zinc on ozone induced phyto-toxicity in cress and lettuce. Can. J. Bot., 52, 645-649. doi: https://doi.org/10.1139/b74-081
  • Das P.K., Kar M. and Mishra D. (1978) Nickel nutrition of plants: Effect of nickel on some oxidase activities during rice (Oryza sativa L.) seed germination. Z. Pflanzenphysiol., 90, 225-233. doi: https://doi.org/10.1016/S0044-328X(78)80235-9
  • Deswal M. and Laura J.S. (2018) Effect of heavy metals cadmium, nickel and lead on the seed germination and early seedling growth of Pisum sativum. Res. J. Life Sci. Bioinform. Pharma. Chem. Sci., 4, 368-383.
  • Dey A. and De J.N. (2010) Rauwolfia serpentina (L). Benth. Ex Kurz. - A Review. Asian J. Plant Sci., 9(6), 285-298. doi: https://doi.org/10.3923/ajps.2010.285.298
  • Djukic M., Bojovic D.D., Grbic M., Skocajic D., Obratov-petkovic D. and Bjedov I. (2013) Effect of Cd and Pb on Ailanthus altissima and Acer negundo seed germination and early seedling growth. Fresenius Environ. Bull., 22(2), 526-532.
  • Duxbury A.C. and Yentsch C.S. (1956) Plankton pigment monographs. J. Mar. Res., 15: 91-101.
  • Espen L., Pirovano L. and Sergio M.C. (1997) Effect of Ni2+ during the early phases of radish (Raphanus sativus) seed germination. Environ. Exp. Bot., 38, 187-197. doi: https://doi.org/10.1016/S0098-8472(97)00011-7
  • Ezhilvannan D., Sharavanan P.S. and Vijayaragavan M. (2011) Changes in growth, sugar and starch contents in groundnut (Arachis hypogaea L.) plants under nickel toxicity. Curr. Bot., 2, 24-26.
  • Ferretti M., Ghisi R., Merlo L., Dallavecchia F. and Passera C. (1993) Effect of cadmium on photosynthesis and enzymes of photosynthesis sulphate and nitrate assimilation pathways in maize (Zea mays L.). Photosynthetica, 29, 49-54.
  • Flemotomou E., Molyviatis T. and Zabitakis I. (2011) The effect of trace elements accumulation on the levels of secondary metabolites and antioxidant activity in carrots, onions and potatoes. Food Nutr. Sci., 2(10), 1071-1076. doi: https://doi.org/10.4236/fns.2011.210143
  • Guleryuz G., Kirmizi S., Arslan H. and Derya S. (2016) The effects of heavy metals on seed germination and seedling growth of two endemic Verbascum species. Fresenius Environ. Bull. 25(4), 1134-1142.
  • Haag-kerwer A., Schafer H.J., Heiss S., Walter C. and Rausch T. (1999) Cadmium expose in Brassica juncea cause a decline in transpiration rate and leaf expansion without effect on photosynthesis. J. Exp. Bot., 50(341), 1827-1835. doi: https://doi.org/10.1093/jxb/50.341.1827
  • Hall J.L. (2002) Cellular mechanisms for heavy metals detoxifications and tolerance. J. Exp. Bot., 53(366), 1-11. doi: https://doi.org/10.1093/jexbot/53.366.1
  • Itoh A., Kumashiro T., Yamaguchi M., Nagakura N., Mizushina Y., Nishi T. and Tanahashi T. (2005) Indole alkaloids and other constituents of Rauwolfia serpentine. J. Nat. Prod., 68, 848-852. doi: https://doi.org/10.1021/np058007n
  • Jain R. and Srivastava S.D. (2006) Effect of cadmium on growth, mineral composition and enzyme activity of sugarcane. Ind. J. Plant Physiol., 2, 306-309.
  • John R., Ahmad P., Gadgil K. and Sharma G. (2009) Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int. J. of Plant Prod., 3(3), 65-70.
  • John R., Ahmad P., Gadgil K. and Sharma S. (2008) Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ., 54(6), 262-270.
  • Kaveriammal S. and Subramani A. (2013) Toxic effect of nickel chloride on the growth behaviour and biochemical constituent of ground nut seedling (Arachis hypogeaea L). Int. J. Res. Bot., 4, 48-52.
  • Konate A., Xiao H., Peng Z., Yu-Hui M., Jie Y., Alugongo G.M., Yu-Kui R. and Zhi-Yong Z. (2018) Alleviation of cadmium- induced changes on growth, antioxidative enzyme activities and lipid peroxidation in crop seedlings by magnetic (Fe3O4) nanoparticles. Fresenius Environ. Bull., 27(6), 3920- 3925.
  • Küpper H., Küpper F. and Spiller M. (1996) Environmental relevance of heavy metal substituted chlorophylls using the example of water plants. J. Exp. Bot., 47(2), 259-266. doi: https://doi.org/10.1093/jxb/47.2.259
  • Larsson E.H., Bornman J.F. and Asp H. (1998) Influence of UV-B radiation and cadmium on chlorophyll fluorescence Brassica napus. J. Exp. Bot., 43(323), 1031-1039. doi: https://doi.org/10.1093/jxb/49.323.1031
  • Latif H.H. (2010) The influence of nickel sulphate on some physiological aspects of two cultivars of Raphanus sativus L. Arch. Biol. Sci., 62(3), 683691. doi: https://doi.org/10.2298/ABS1003683H
  • Lowry O.H., Rosebrough N.J., Farr A.L. and Randall R.J. (1951) Protein measurement with folin phenol reagent. J. Biol. Chem., 193(1), 265-275. doi: https://doi.org/10.1016/S0021-9258(19)52451-6
  • Machlachlan S. and Zalik S. (1963) Plastid structure, chlorophyll concentration and free amino acid composition of chlorophyll mutant on barley. Can. J. Bot., 41(7), 1053-1062. doi: https://doi.org/10.1139/b63-088
  • Malan H.L. and Farrant J.M. (1998) Effects of the metal pollutants cadmium and nickel on soybean seed development. Seed Sci. Res., 8(4), 445-453. doi: https://doi.org/10.1017/S0960258500004414
  • Meena A.K., Bansal P. and Kumar S. (2009) Plants-herbal wealth as a potential source of Ayurvedic drugs. Asian J. Trad. Med., 4(4), 152-170.
  • Melnichuk Y.P., Lishko A.K. and Kalinin F.L. (1982) Cd effect on free amino acid content in germs of pea seeds at early germination stages. Fiziologiya biokhimiya kulturnyh Rasstenii, 14, 383-385.
  • Mironov A.N. (2013) Modern approaches to the issue of standardization of medicinal plant raw materials. Bull. Sci. Centre Expert. Med. Prod., 2, 52-56.
  • Mittal B., Meenakshi, Sharma A. and Gothecha V.K. (2012) Phytochemical and pharmacological activity of Rauwolfia serpentina- a review. Int. J. Ayurvedic Herb. Med., 2(3), 427-434.
  • Mohanta R.K., Rout S.D. and Sahu H.K. (2006) Ethno medicinal plant resources of simlipal biosphere reserve, Orissa, India. Zoo's Print, 21, 2372-2374. doi: https://doi.org/10.11609/J0TT.ZPJ.1435.2372-4
  • Mujeeb A., Iqbal M.Z., Shafiq M., Kabir M. and Farooqi Z.U.R. (2019) The toxic effects of various concentration of nickel on seed germination and growth of Cowpea (Vigna unguiquilata L. Walp. World J. Pharma. Med. Res., 5(3), 58-63.
  • Nada E., Ferjani B.A., Ali R., Bechir B.R., Imed M. and Makki B. (2007) Cadmium induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Physiol. Plant., 29, 57-62. doi: https://doi.org/10.1007/s11738-006-0009-y
  • Nelson N. (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem., 153(2), 375-380. doi: https://doi.org/10.1016/S0021-9258(18)71980-7
  • Ouzounidou G., Moustakas M., Symeonidis L. and Karataglis S. (2006) Response of wheat seedlings to Ni stress: effects of supplemental calcium. Arch. Environ. Contam. Toxicol., 50, 346. doi: doi: https://doi.org/1007/s00244-005-5076-3
  • Padmaja K., Prasad D.D.K. and Prasad A.R.K. (1990) Inhibition of chlorophyll synthesis in Phaseolus vulgaris seedlings by cadmium acetate. Photosynthetica, 24(3), 399-405.
  • Páhlsson A.M.B. (1989) Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water Air Soil Pollut., 47, 287-319. doi: https://doi.org/10.1007/BF00279329
  • Palma J.M., Sandalio L.M., Javier-Corpas F., Romero-Puertas M.C., McCarthy I. and del Río L.A. (2002) Plant proteases protein degradation and oxidative stress: role of peroxisomes. Plant Physiol. Biochem., 40(6-8), 521-530. doi: https://doi.org/10.1016/S0981-9428(02)01404-3
  • Pandey N. and Sharma C.P. (2003) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of tomato plants. Plant Physiol., 35, 112-117. doi: https://doi.org/10.1016/S0168-9452(02)00210-8
  • Patra M., Bhowmik N., Bandopadhyay B. and Sharma A. (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ. Exp. Bot., 52(3), 199-223. doi: https://doi.org/10.1016/j.envexpbot.2004.02.009
  • Poonam, Agrawal S. and Mishra S. (2013) Physiological, biochemical and modern biotechnological approach to improvement of Rauwolfia serpentina. IOSR J. Pharm. Biol. Sci., 6(2), 73-78. doi: https://doi.org/10.9790/3008-0627378
  • Rabie M.H., Eleiwa M.E., Aboseoud M.A. and Khalil K.M. (1992) Effect of nickel on the content of carbohydrate and some mineral in corn and broad bean plant. J. King Abdulaziz Univer., 4, 37-43. doi: https://doi.org/10.4197/SCI.4-L4
  • Rai S.K. (2004) Medicinal plants used by meche people of Jhapa District, Eastern Nepal. Our Nat., 2, 27-32. doi: https://doi.org/10.3126/on.v2i1.321 Seregin I.V., Kozhevnikova A.D., Kazyumina E.M. and
  • Ivanov V.B. (2003) Nickel toxicity and distribution in maize roots. Russ. J. Plant Physiol., 50, 711-717. doi: https://doi.org/10.1023/A:1025660712475
  • Shah K., Mankad A.U. and Reddy M.N. (2017) Cadmium accumulation and its effects on growth and biochemical parameters in Tagetes erecta L. J. Pharmacogn. Phytochem., 6(3), 111-115.
  • Shukla V. and Thapliyal J. (2021) Effect of toxic metals on seed germination of Rheum emodi (Wall. Ex Meissn), a rare medicinal plant of Garhwal Himalaya. J. Stress Physiol. Biochem., 17(2), 55-65.
  • Shweti, Kumar A. and Verma J.S. (2018) Effects of nickel chloride on germination and seedling growth of different wheat (Triticum aestivum L. em Thell.) cultivars. J. Pharmacogn. Phytochem., 7(4), 22272234.
  • Stiborova M., Doubrovava M., Brezninova A. and Frederick A. (1986) Effect of heavy metal ion on growth and biochemical characteristics of photosynthesis of barley Hordeum vulgare L. Phytosynthetica, 20(4), 418-425.
  • Talebi S., Kalat S.M.N. and Darban A.L.S. (2014) The study effects of heavy metals on germination characteristics and proline content of Triticale (Triticoseale wittmack). Int. J. Farm. All. Sci., 3(10), 1080-1087.
  • Van Assche F. and Clijsters H. (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ., 13, 195-206. doi: https://doi.org/10.1111/j.1365-3040.1990.tb01304.x Vyas M.K. (2017) Changes in seedling growth and biochemical contents in Abrus precatorius L. under nickel treatment. UK J. Pharma. Biosci., 5(3), 14-18. doi: https://doi.org/10.20510/ukjpb/5Zi3/155961 Welch R.M. (1981) The biological significance of nickel. J. Plant Nutr., 3(1-4), 345-356. doi: https://doi.org/10.1080/01904168109362843 Wuana R.A. and Okieimen F.E. (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res. Notices, doi: https://doi.org/10.5402/2011/402647
  • Yourtchi M.S. and Bayat H.R. (2013) Effect of cadmium toxicity on growth, cadmium accumulation and macronutrient content of durum wheat (Dena CV.). Int. J. Agric. Crop Sci., 6(15), 1099-1103. Zengin F.K. and Munzuroglu O. (2006) Toxic effects of cadmium (Cd++) on metabolism of sunflower (Helianthus annuus L.) seedlings. Acta Agric. Scand. B Soil Plant Sci., 56(3), 224-229. doi: https://doi.org/10.1080/0906471051003087
Еще
Статья научная