The utility model relates to a three-stage series LNG cold energy power generation system for recovering flue gas waste heat

Автор: Chen Zh., Kuznetsov D., Yang X.

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Технические науки

Статья в выпуске: 6 т.10, 2024 года.

Бесплатный доступ

In this paper, a three-stage series power generation system is designed. The waste heat generated by the engine is used as the heat source, and the energy released before LNG liquefaction is used as the cold energy. It is used to improve the performance of the system by increasing the carbon dioxide transcritical cycle. With the target of maximum generation capacity and exergic efficiency, exergic pressure and condensation pressure in the system were selected for the most beneficial generation capacity and efficiency of the system through analysis of exergic pressure and evaporation pressure.

Three-stage series, lng, waste heat, generation capacity, exergic efficiency

Короткий адрес: https://sciup.org/14130490

IDR: 14130490   |   DOI: 10.33619/2414-2948/103/37

Список литературы The utility model relates to a three-stage series LNG cold energy power generation system for recovering flue gas waste heat

  • Bao, J., Lin, Y., Zhang, R., Zhang, N., & He, G. (2017). Effects of stage number of condensing process on the power generation systems for LNG cold energy recovery. Applied Thermal Engineering, 126, 566-582. https://doi.org/10.1016/j.applthermaleng.2017.07.144
  • Li, P., Li, J., Pei, G., Munir, A., & Ji, J. (2016). A cascade organic Rankine cycle power generation system using hybrid solar energy and liquefied natural gas. Solar Energy, 127, 136-146. https://doi.org/10.1016/j.solener.2016.01.029
  • Sadreddini, A., Ashjari, M. A., Fani, M., & Mohammadi, A. (2018). Thermodynamic analysis of a new cascade ORC and transcritical CO2 cycle to recover energy from medium temperature heat source and liquefied natural gas. Energy Conversion and Management, 167, 9-20. https://doi.org/10.1016/j.enconman.2018.04.093
  • Yang, X., Zou, J., Lei, Q., Lu, X., & Chen, Z. (2023). Thermo-Economic Analysis and Multi-Objective Optimization of a Novel Power Generation System for LNG-Fueled Ships. Journal of Marine Science and Engineering, 11(12), 2219. https://doi.org/10.3390/jmse11122219
  • Lee, S. (2017). Multi-parameter optimization of cold energy recovery in cascade Rankine cycle for LNG regasification using genetic algorithm. Energy, 118, 776-782. https://doi.org/10.1016/j.energy.2016.10.118
  • Han, F., Wang, Z., Ji, Y., Li, W., & Sunden, B. (2019). Energy analysis and multi-objective optimization of waste heat and cold energy recovery process in LNG-fueled vessels based on a triple organic Rankine cycle. Energy Conversion and Management, 195, 561-572. https://doi.org/10.1016/j.enconman.2019.05.040
  • Tian, Z., Zeng, W., Gu, B., Zhang, Y., & Yuan, X. (2021). Energy, exergy, and economic (3E) analysis of an organic Rankine cycle using zeotropic mixtures based on marine engine waste heat and LNG cold energy. Energy conversion and management, 228, 113657. https://doi.org/10.1016/j.enconman.2020.113657
  • Choi, B. C., & Kim, Y. M. (2013). Thermodynamic analysis of a dual loop heat recovery system with trilateral cycle applied to exhaust gases of internal combustion engine for propulsion of the 6800 TEU container ship. Energy, 58, 404-416. https://doi.org/10.1016/j.energy.2013.05.017
  • Mohammadi, K., & McGowan, J. G. (2019). A thermo-economic analysis of a combined cooling system for air conditioning and low to medium temperature refrigeration. Journal of cleaner production, 206, 580-597. https://doi.org/10.1016/j.jclepro.2018.09.107
  • Wang, X., & Dai, Y. (2016). Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study. Applied energy, 170, 193-207. https://doi.org/10.1016/j.apenergy.2016.02.112
  • Yao, S., Wei, Y., Zhang, Z., & Yang, Y. (2023). Design study on the integrated utilization system of medium temperature waste heat and LNG vaporization cold energy for 200000 DWT LNG-powered vessels. Thermal Science, 27(2 Part A), 1289-1299. https://doi.org/10.2298/TSCI220326146Y
  • Kang, L., Tang, J., & Liu, Y. (2021). Optimal design of organic Rankine cycle system for multi-source waste heat recovery involving multi-period operation. Energy, 235, 121379. https://doi.org/10.1016/j.energy.2021.121379
Еще
Статья научная