Theoretical evaluation of phenyl-substituted aziridines, azirines and epoxides reactivity

Автор: Borodina O.S., Novikov A.S., Zyryanov G.V., Bartashevich E.V.

Журнал: Вестник Южно-Уральского государственного университета. Серия: Химия @vestnik-susu-chemistry

Рубрика: Физическая химия

Статья в выпуске: 4 т.15, 2023 года.

Бесплатный доступ

The reactivity of three-membered heterocycles such as phenyl-substituted aziridines, azirines, epoxides was studied in comparison with styrenes, azomethines and carbonyl compounds which are most often used in organic synthesis in nucleophilic and electrophilic reactions. In accordance with electronic reactivity indices of nucleophilicity and electrophilicity calculated on the base of DFT approach, the substituted molecules of azirines, aziridines, and epoxides exhibit the similar reactivity to aldehydes and styrenes. In all cases, our predictions were checked against the experimental observations given in literature. All considered compounds mainly characterizes by the properties of medium-strength electrophiles. Aziridines, azirines, epoxides with two aryl groups show the best electrophilic properties. This observation can be used in predictions of reactivity for these classes of compounds. Among three-membered heterocycles, the best nucleophilic properties were observed for substituted epoxy cycles. We have found that the dual descriptor based on Fukui functions cannot be recommended for predictions the reactivity of aziridines and epoxides. The values of the dual descriptor on both carbon atoms in three-membered ring significantly differ, while the experimental data on nucleophilic addition indicate that the reaction proceeds at both carbon atoms. Nevertheless, for phenyl-substituted azirines, the descriptor based on Fukui functions shows its effectiveness quite well.

Еще

Aziridines, azirines, epoxides, reactivity indices, fukui functions, dual descriptor, three-membered heterocycles, nucleophilic and electrophilic reactions

Короткий адрес: https://sciup.org/147242676

IDR: 147242676   |   DOI: 10.14529/chem230406

Список литературы Theoretical evaluation of phenyl-substituted aziridines, azirines and epoxides reactivity

  • Chatterjee R., Santra S., Chakraborty Ghosal N. et al. // ChemistrySelect. 2020. V. 5, no. 15. P. 4525–4529. DOI: 10.1002/slct.202000853.
  • Chatterjee R., Samanta S., Mukherjee A. et al. // Tetrahedron Letters. 2019. V. 60, no. 3. P. 276–283. DOI: 10.1016/j.tetlet.2018.12.027.
  • De A., Santra S., Kovalev I.S. et al. // Mendeleev Commun. 2020. V. 30, no. 2. P. 188–189. DOI: 10.1016/j.mencom.2020.03.019.
  • De A., Santra S., Zyryanov G.V. et al. // Org. Lett. 2020. V. 22, no. 10. P. 3926–3930. DOI: 10.1021/acs.orglett.0c01206.
  • De A., Santra S., Hajra A. et al. // J. Org. Chem. 2019. V. 84, no. 18. P. 11735–11740. DOI: 10.1021/acs.joc.9b01625.
  • Zyryanov G.V., Kopchuk D.S., Kovalev I.S. et al. // Mendeleev Commun. 2020. V. 30, No. 5.
  • P. 537–554. DOI: 10.1016/j.mencom.2020.09.001.
  • Chakraborty N., Santra S., Kundu S.K. et al. // RSC advances. 2015. V. 5, no. 70. P. 56780–56788. DOI: 10.1039/C5RA11092K.
  • Pal S., Chatterjee R., Santra S. et al. // Adv. Synth. Catal. 2021. V. 363, no. 23. P. 5300–5309. DOI: 10.1002/adsc.202100796.
  • Zevatskiy Y. New calculation method physical and chemical properties of organic compounds. Saint-Petersburg: Saint-Petersburg State Institute of Technology (Technical University), 2020. 59 p. DOI: 10.2139/ssrn.4453611.
  • Krylov E.N., Zubanova E.A., Ivanova Yu.M. // Ivanovo State University bulletin. Series Natural, social sciences. 2012. No. 2. P. 58–67. (In Russ.). EDN: PBJGAN.
  • Chattaraj P.K. (Ed.) Chemical reactivity theory: A Density Functional View (1st ed.). Boka Raton: CRC Press., 2009. 576 p. DOI: 10.1201/9781420065442.
  • Roy R.K., Krishnamurti S., Geerlings P. et al. // J. Phys. Chem. A. 1998. V. 102, No. 21. P. 3746–3755. DOI: 10.1021/jp973450v.
  • Roy R.K., Saha S. // Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 2010. V. 106, No. 118. DOI:10.1039/b811052m.
  • Saha S., Roy R. // Phys. Chem. Chem. Phys. 2008. V. 10. P. 5591. DOI: 10.1039/B802966K.
  • Volkova T.G., Sterlikova I.O., Klyuev M.V. // Russ. J. Gen. Chem. 2011. V. 81, No. 10. P. 2121–2124. DOI: 10.1134/S1070363211100148.
  • Parr R.G., Yang W. // J. Am. Chem. Soc. 1984. V. 106. P. 4049–4050. DOI: 10.1021/ja00326a036.
  • Oláh J., Van Alsenoy C., Sannigrahi A.B. // J. Phys. Chem. A. 2002. V. 106, No. 15. P. 3885–3890. DOI: 10.1021/jp014039h.
  • Cárdenas C., Rabi N., Ayers P.W. et al. // J. Phys. Chem. A. 2009. V. 113, No. 30. P. 8660–8667. DOI: 10.1021/jp902792n.
  • Mendkovich A.S., Syroeshkin M.A., Mikhailov M.N. et al. // Russ. Chem. Bull. 2010. V. 59, No. 11. P. 2068–2071. DOI: 10.1007/s11172-010-0356-0.
  • Zhao Z.J., Liu S., Zha S. et al. // Nat. Rev. Mater. 2019. V. 4, No. 12. P. 792–804. DOI: 10.1038/s41578-019-0152-x.
  • Domingo L.R., Ríos-Gutiérrez M., Pérez P. // Molecules. 2016. V. 21, No. 6. P. 748. DOI: 10.3390/molecules21060748.
  • Domingo L.R., Aurell M.J., Pérez P. et al. // Tetrahedron. 2002. V. 58, No. 22. P. 4417–4423. DOI: 10.1016/S0040-4020(02)00410-6.
  • Jaramillo P., Domingo L.R., Chamorro E. et al. // J. Mol. Struct.: THEOCHEM. 2008. V. 865, No. 1–3. P. 68–72. DOI: 10.1016/j.theochem.2008.06.022.
  • Frisch M.J., Trucks G.W., Schlegel H.B. et al. // Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford CT. 2009. URL.: http://www. gaussian. com (date of access: 01.09.2023).
  • Lu T., Chen F. // J. Comput. Chem. 2012. V. 33, No. 5. P. 580–592. DOI: 10.1002/jcc.22885.
  • Contreras R., Andrés J., Safont V.S. et al. // J. Phys. Chem. A. 2003. V. 107, No. 29. P. 5588–5593. DOI: 10.1021/jp0302865.
Еще
Статья научная