Therapeutic effects of hydroethanolic extract of Erythrina senegalensis in diclofenac sodium-induced hepatotoxicity male Wistar rat: biochemical, redox potential and histopathological outcomes

Автор: Ezihe Ch.I., Agu S.T., Rabo N.D., Ochigbo V.N.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 3 т.19, 2023 года.

Бесплатный доступ

Background: Hepatotoxicity is one of the main side effects associated with Diclofenac sodium (DFS) administration. The present study aimed to examine the therapeutic effects of hydroethanolic leaf extract of Erythrina senegalensis (HELEES) on DFS-induced hepatotoxicity. Thirty male Wistar rats, 5 per group, were used in this study. They were randomly divided into 6 experimental groups (A-F) and treated for 21 days. Rats in Group A served as the control group and received distilled water orally; group B was given DFS at 10 mg/kg body weight intraperitoneally (IP). HELEES were given to groups C and D at doses of 200 and 400 mg/kg body weight, respectively. Groups E and F were given DFS at 10 mg/kg + HELEES at 200 and 400 mg/kg respectively. Results: DFS administration significantly increased the bilirubin concentration and serum transaminases (ALT, AST, GGT, and ALP) and LDH; total protein and albumin were significantly inhibited. There was a significant reduction in hepatic reduced glutathione (GSH), glutathione-S-transferase (GST), glutathione peroxidase (GPx), and nitric oxide (NO) activity, together with a significant increase in hepatic malondialdehyde (MAD), superoxide dismutase (SOD), and catalase (CAT). However, concurrent treatment with DFS + HELEES ameliorated the DFS-induced hepatotoxicity and oxidative stress. The results suggest that HELEES may offer some therapeutic effects against hepatic damage. In contrast to the control and HELEES-only groups, which had normal hepatic tissue morphology, rats given DFS alone developed hepatic necrosis and periportal inflammation, with the presence of numerous inflammatory cells and Kuppel cells. Examinations of liver samples from the groups given Concurrent treatment with DFS and HELEES revealed patterns that were comparable to those seen in the control group. Combining DFS with HELEES has always reduced the impact of DFS. Conclusions: Collectively, HELEES enhanced hepatic function in DFS-treated rats by suppressing nitrosative and oxidative stress.

Еще

Diclofenac, erythrina senegalensis, liver, oxidative stress, rats

Короткий адрес: https://sciup.org/143180568

IDR: 143180568

Список литературы Therapeutic effects of hydroethanolic extract of Erythrina senegalensis in diclofenac sodium-induced hepatotoxicity male Wistar rat: biochemical, redox potential and histopathological outcomes

  • Abu, A. H., & Uchendu, C.N. (2010). Antispermatogenic effects of aqueous ethanolic extract of Hymenocardia acida stem bark in Wister rats. Journal of medicinal plants Research, 4(23): 24942502.
  • Adeyemi, W.J., Omoniyi, J.A., Olayiwola, A., Ibrahim, M, Ogunyemi, O., & Olayaki, L.A. (2019). Elevated reproductive toxicity effects of diclofenac after withdrawal: investigation of the therapeutic role of melatonin, Toxicol. Rep. 1:571-577, https://doi.org/10.1016Zj.toxrep.2019.06.009.
  • Alabi, Q. K., Akomolafe, O. R., Olukiran, S. O., Adeyemi, W. J., Nafiu, A. O., Adefisayo, M. A., Omole, J. G., Kajewole, D. I., & Odujoko, O. O. (2017). The Garcinia kola biflavonoid kolaviron attenuates experimental hepatotoxicity induced by diclofenac. Pathophysiology, 24: 281-290.
  • Alabi, Q.K., & Akomolafe, R. O. (2020). Kolaviron diminishes diclofenac-induced liver and kidney toxicity in Wistar rats by suppressing inflammatory events, upregulating antioxidant defenses, and improving hematological indices. Dose-Response, 18(1), 1559325819899256. https://doi.org/10.1177/1559325819899256.
  • Alberto, F., Charles, S,. & Hary, G. (1966). An improved method for determination of serum albumin and globulin. Clinical chemistry, Oxford academia, 12 (4), 194-205.
  • Aycan, I .O., Elpek, O., Akkaya, B., Kirac, E., Tuzcu, H., Kaya, S., Coskunfirat, N., & Aslan, M. (2018). Diclofenac-induced gastrointestinal and renal toxicity is alleviated by thymoquinone treatment, Food Chemicals and Toxicology. 118: 795-804, https://doi. org/10.1016/j.fct.2018.06.038.
  • Basavraj, S.T., Fefar, D.T., Prajapati, K.S., Jivani, B.M., Thakor, K.B., Patel, J.H., Ghodasara, D.J., Joshi, B.P., & Undhad, V.V. (2012). Haematobiochemical alterations induced by diclofenac-sodium toxicity in Swiss albino mice. Veterinary World, 5(7):417-419
  • Beyerle, J., Frei, E., Stiborova, M., Habermann, N., Ulrich., & C. M. Biotransformation of xenobiotics in the human colon and rectum and its association with colorectal cancer. Drug Metab Rev. 2015;47(2);199-221.
  • Boelasterli, U.A (2003). Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity, Toxicol. Appl. Pharmacol. 192 (2003) 307-322, https://doi.org/10.1016/ s0041-008x(03)00368-5.
  • Boelsterli, U.A. (2002a). Mechanisms underlying the hepatotoxicity of nonsteroidal anti-inflammatory drugs, in: Kaplowitz, N., DeLeve, L. (Eds.), Drug-Induced Liver Disease, Marcel Dekker, New York, pp.345-375.
  • Boelsterli, U.A. (2002b). Xenobiotic acyl glucuronides and acyl CoA thioesters as protein-reactive metabolites with the potential to cause idiosyncratic drug reactions. Current Drug Metabolism. 3, 439450.
  • Boelsterli, U.A. (2002c). Mechanisms of NSAID-induced hepatotoxicity: focus on nimesulide. Drug Safety, 28, 109-121.
  • Boerma, J.S., Dragovic, S., Vermeulen, N.P., & Commandeur, J.N.M. (2012). Mass spectrometry characterization of protein adducts of multiple P450- dependent reactive intermediates of diclofenac to human glutathione-S-transferase P1-1. Chemical Research and Toxicology, 25: 25322541.
  • den Braver MW, Zhang Y, Venkataraman H, Venkataraman, H., Vermeulen, N.P.E., & Commandeur, J.N.M. (2016). Simulation of interindividual differences in inactivation of reactive parabenzoquinone imine metabolites of diclofenac by glutathione S-transferases in human liver cytosol. Toxicological Letter, 255: 52-62.
  • Cantoni, L., Valaperta, R., Ponsoda, X., Castell, J., Barella, V., Rizzardini, D., Mangolini, M., Lhauri, A., &Villa, P. (2003). Induction of hepatic hem oxygenase-1 by diclofenac in Diclofenac toxicity to hepatocytes: a role for drug metabolism in cell toxicity. J Ethnopharmacol, 89:217-219.
  • Chen, R., Wang, J., Zhang, Y., Tang, S., & Zhan, S. (2015). Key factors of susceptibility to antituberculosis drug-induced hepatotoxicity. Archives of Toxicology, 89(6):883-897
  • Christensen, C.B,, Soelberg, J., Stensvold, C.R., & Jager, A. K. (2015) Activity of medicinal plants from Ghana against the parasitic gut protist Blastocystis. J Ethnopharmacol 174: 569- 575.
  • Claiborne A. (1985) Catalase activity. In: Greenwald RA (ed) CRC handbook of methods in oxygen radical research. CRC Press, Boca Raton , pp.283-284.
  • Daly, A. K. (2017). Are polymorphisms in genes relevant to drug disposition predictors of susceptibility to drug-induced liver injury? Pharmaceutical Research. 34: 1564-1569
  • Donfack, J. H., Njayou, F. N., Rodrigue, T. K., Chuisseu, D. D. P., Tchana, N. A.,Vita, Finzi, P., Tchouanguep, M. F., Ngadjui, T. B., & Moundipa, F. P. (2008). Study of A Hepatoprotective and Antioxidant Fraction from Erythrina Senegalensis Stem Bark Extract: In Vitro And In Vivo. Pharmacologyonline 1: 120-130.
  • Doumas, B.T. (1975). Standard for Total Serum protein assay. Clinical chemistry, Oxford academia. 21(8):1159-1166, https://doi.org/10.1093/clinchem/ 21.8.1159
  • Dragovic, S., Boerma, J.S., Vermeulen, N.P, & Commandeur, J.N.M. (2013). Effect of human glutathione S-transferases on glutathione-dependent inactivation of cytochrome P450-dependent reactive intermediates of diclofenac. Chemical Research and Toxicology. 26(11):1632-41. doi: 10.1021/tx400204d. Epub 2013
  • Esmaeilzadeh, M., Heidarian, E., Shaghaghi, M., Roshanmehr, H., Najafi, M., Moradi, A., Nouri, A. (2020). Gallic acid mitigates diclofenac-induced liver toxicity by modulating oxidative stress and suppressing IL-1b gene expression in male rats. Pharmaceutical Biology. 58(1): 590e596. https://doi.org/10.1080/ 13880209.2020.1777169
  • European Medicines Agency (EMVA/CVMP) (2014). CVMP assessment report under Article 30(3) of Regulation (EC) No 726/2004.
  • https://www.ema.europa.eu/en/documents/report/ cvmp-assessmentreport-under-article-303-regulation-ec-no-726/ .
  • Galati, G., Tafazoli, S., Sabzevari, O., Chan, T. S., & O'Brien, P. J. (2002). Idiosyncratic NSAID drug drug-inducedative stress. Chem Biol Interact. 142(1-2):25-41.
  • Gor, A. P., & Saksena, M. (2011). Adverse drug reactions of nonsteroidal anti-inflammatory drugs in orthopedic patients, Journal of Pharmacology and Pharmacotherapy. 2 (1):26-29, https://doi.org/10.4103/0976-500X.77104.
  • Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal of Biochemistry, 126:131138.
  • Gupta, Y. K., Sharma, M., & Chaudhary, G. (2002). Pyrogallol-induced hepatotoxicity in rats: a model to evaluate antioxidant hepatoprotective agents. Methods Find. Experimental and Clinical Pharmacology. 24, 497-500. doi: 10.1358/mf.2002.24.8.705070
  • Gupta, A., Kumar, R., Ganguly, R., Singh, A. K., Rana, H. K, & Pandey, A. k (2020). Antioxidant, anti-inflammatory and hepatoprotective activities of Terminalia bellirica and its bioactive component ellagic acid against diclofenac induced oxidative stress and hepatotoxicity, Toxicological Report. 24: 44-52.
  • Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974) Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249:7130-7139.
  • Hassan, R. A., Hozayen, W. G., Abo, S. H. T., Al-Muzafar, H. M., Amin, K. A., Ahmed, O. M. (2021). Naringin and Hesperidin Counteract Diclofenac-Induced Hepatotoxicity in Male Wistar Rats via Their Antioxidant, Anti-Inflammatory, and Antiapoptotic Activities. Oxidative and Medical Cell Longevity, 11; 2021:9990091. doi: 10.1155/2021/9990091.
  • Huo, X., Meng, Q., Wang, C., Wu, J., Wang, C., Zhu, Y., Ma, X., Sun, H., & Liu, K. (2020). Protective efect of cilastatin against diclofenac-induced nephrotoxicity through interaction with diclofenac acyl glucuronide via organic anion transporters. British Journal of Pharmacology, 177(9), 1933-1948. https://doi.org/10.1111/bph.14957
  • Ilodigwe, E., Okonkwo, B., Agbata, C., Ajaghaku, D., & Eze, P. (2014). Wound healing activity of ethanol leaf extract of Erythrina senegalensis. British Journal of Pharmacological Research 4(4): 531.
  • Jollow, D. J., Mitchell, J. R., Zampaglione, N., & Gillette, J. R. (1974). Bromobenzene induced liver necrosis: protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology; 11:151-169
  • Kavasi, R., Berdiaki, A., Spyridaki, I., Corsini, E., Tsatsakis, A., Tzanakakis, G., & Nikitovic, D. (2017). HA metabolism in skin homeostasis and inflammatory disease, Food Chemical and Toxicol. 101:128-138.
  • King, J. C., & Cousins, R. J. (2006). "Zinc," in Modern Nutrition in Health and Disease, 10th Edn, eds M. E. Shils, M. Shike, A. C. Ross, B. Caballero, and R. J. Cousins (Philadelphia, PA: Lipponcott Williams and Wilkins), 271-285
  • Kobylinska, L., Havrylyuk, D. Y., Ryabtseva, A. O., Mitina, N. E., Zaichenko, O. S., Lesyk, R. B, et al. (2015a). Biochemical indicators of hepatotoxicity in blood serum of rats under the effect of novel 4-thiazolidinone derivatives and doxorubicin and their complexes with a polyethyleneglycol-containing nanoscale polymeric carrier. Ukraine Biochemical Journal. 87(2):122-132
  • Kone, W. M., Vargas, M., & Keiser, J. (2012). Anthelmintic activity of medicinal plants used in Cte d'lvoire for treating parasitic diseases. Parasitological Research, 110(6): 2351-2362.
  • Larsen, B. H. V., Soelberg, J., Kristiansen, U., & Jager, A. K. (2016). Uterine contraction induced by Ghanaian plants used to induce abortion. South African Journal Botany, 106: 137-139.
  • Lazarska, K. E., Dekker, S. J., Vermeulen, N. P. E, & Commandeur, J. N. M (2018). Effect of UGT2B7*2 and CYP2C8*4 polymorphisms on diclofenac metabolism. Toxicological Letter. 284: 70-78. https://rioi.org/10.1016/jtoxlet.2017.11.038
  • Lee, C. T, Yu, L. E., & Wang, J. Y. (2016). Nitroxide antioxidant as a potential strategy to attenuate the oxidative/nitrosative stress induced by hydrogen peroxide plus nitric oxide in cultured neurons. Nitric Oxide. 54:38-50.
  • Lillie, R. D., & Fullmer, H. M. (1976). Histopathologic technic and practical histochemistry, 4th edn. McGraw-Hill, New York.
  • Lim, M.S., Lim, P. L. K., Gupta, R., & Boelsterli, U. A. (2006). Critical role of free cytosolic calcium, but not uncoupling, in mitochondrial permeability transition and cell death induced by diclofenac oxidative metabolites in immortalized. Toxicology and applied pharmacology, 217 (3), 322-331, 2006
  • Masubuchi, Y., Nakayama, S., & Horie, T. (2002). Role of mitochondrial permeability transition in diclofenac-induced hepatocyte injury in rats. Hepatology. 35:(3),544-551, 2002.
  • Misra, H. P., & Fridovich, I. (1972). The role of superoxide anion in the auto-oxidation of nephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247:3170-3175.
  • Mohandas, M., Marshall, J. J., Duggin, G. G., Horvath, J. S., & Tiller, D. (1984) Differential distribution of glutathione and glutathione related enzymes in rabbit kidney. Cancer Research, 44:5086-509.
  • Nagai, K., Fukuno, S., Oda, A., & Konishi, H. (2016). Protective effects of taurine on doxorubicin-induced acute hepatotoxicity through suppression of oxidative stress and apoptotic responses. Anticancer Drugs, 27(1):17-23.
  • National Institute of Health (N.I.H). (1985). Guide for the care and use of laboratory animals. DHEW publication; Office of Science and Health Reports; Bethsaida; U.S.A.
  • Rogoveanu, O.C., Calina, D., Cucu, M.G., Burada, F., Docea, A.O., Sosoi, S., Stefan, E., Ioana, M., & Burada, E. (2018). Association of cytokine gene polymorphisms with osteoarthritis susceptibility, Experimental and Therapeutic Medicine. 16:26592664.
  • Peter, S. J, Basha, S. K., Giridharan, R., Lavinya, U., & Sabina, E.P. (2017). Suppressive effect of Spirulina fusiformis on diclofenac-induced hepato-renal injury and gastrointestinal ulcer in Wistar albino rats: a biochemical and histological approach. Biomedical Pharmacotherapy, 88: 11-18. doi: 10.1016/j.biopha.2017.01.032
  • Pick, A., & Keisari, Y. (1981). Superoxide anion and H2O2 production by chemically elicited peritoneal macrophages-induction by multiple nonphagocytic stimulus. Cell Immunology. 59:301-308.
  • Risebrough, R. W. (2006). Diclofenac: A new environmental poison in south Asia. Journal of the Bombay Natural History Society, 103:239-250.
  • Singh, D,. Cho, W.C., & Upadhyay, G. (2016). Drug-Induced Liver Toxicity and Prevention by Herbal Antioxidants: An Overview. Frontier of Physiology. 6:363. doi:10.3389/fphys.2015.00363
  • Siu, W. P., Pamela B. L. P., Calivarathan L., Urs A. B. (2008). Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: Multiple protective roles of cyclosporin A. Toxicology and Applied Pharmacology, (227):,451-461,ISSN 0041-008X,https://doi.org/10.1016
  • Teoh, N.C., & Farel, G. C. (2003). Hepatotoxicity associated with non-steroidal anti-inflammatory drugs. Clinics in Liver Disease, 7(2):401 - 413
  • Thanagari, B.S., Fefar, D.T., Prajapati, K. S., Jivani, B.M., Thakor, K.B., Patel, J.H., Ghodasara, D.J., Joshi, B.P., & Undhad, V.V. (2012). Haemato-biochemical alterations induced by diclofenac sodium toxicity in Swiss albino mice, Veterinary World, 5:417-419.
  • Thefeld, W., Hoffmeister, H., Busch, E.W., Koller, P.U., & Vollmar, J. (1994). Reference values for the determination of GOT, GPT and ALP amongst other parameters in serum with optimal standard methods. Deutsche Medizinische Wochenschrift, 99:343-344.
  • Thomas, L. (1998). Clinical Laboratory Diagnostics: Use and Assessment of Clinical Laboratory Results. Ist Ed. TH-Books, Frankfurt, Germany,
  • Togola, A., Austarheim, I., T., Diallo, A. D., & Paulsen, B.S. (2008). Ethnopharmacological uses of Erythrina senegalensis: a comparison of three areas in Mali, and link between traditional knowledge and modern biological science. Journal of Ethnobiology and Ethnomedicine, 4:6. doi:10.1186/1746-4269-4-6.
  • Uetrecht, J.P. (1999). New concepts in immunology relevant to idiosyncratic drug reactions: the "Danger Hypothesis" and innate immune system. Chemical Research and Toxicology, 12:387-395.
  • Upadhyay, G., Kumar, A., & Singh, M. P. (2007). Effect of silymarin on pyrogallol- and rifampicin-induced hepatotoxicity in mouse. Eur. J. Pharmacol. 565, 190-201. doi: 10.1016/j.ejphar.2007.03.004
  • Upadhyay, G., Singh, A. K., Kumar, A., Prakash, O., & Singh, M. P. (2008). Resveratrol modulates pyrogallol-induced changes in hepatic toxicity markers, xenobiotic metabolizing enzymes and oxidative stress. European Journal of Pharmacology. 596, 146-152. doi: 10.1016/j.ejphar.2008.08.019
  • Upadhyay, G., Tiwari, M. N., Prakash, O., Jyoti, A., Shanker, R., & Singh, M. P. (2010b). Involvement of multiple molecular events in pyrogallolinduced hepatotoxicity and silymarin-mediated protection: evidence from gene expression profiles. Food and Chemical Toxicology. 48, 1660-1670. doi: 10.1016/j.fct.2010.03.04
  • Vohra, F., & Raut, A. (2016). Comparative efficacy, safety, and tolerability of diclofenac and aceclofenac in musculoskeletal pain management: a systematic review, Indian Journal of Pain 30:3-6.
  • Vredenburg, G., Elias, N. S., Venkataraman H., Hendriks, D. F., Vermeulen, N.P., Commandeur, J. N., & Vos, J. C. (2014). Human NAD(P)H:quinone oxidoreductase 1 (NQO1)-mediated inactivation of reactive quinone imine metabolites of diclofenac and mefenamic acid. Chemical Research in Toxicology, 27: 576-586. doi: 10.1021/tx400431k.
  • Wang, Y., Mei, X., Yuan, J., Lu, W., Li, B., & Xu, D. (2015). Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats. Toxicology and Applied Pharmacology, 289(1):1-11.
  • Wanyong, Y., Zefeng, T., Xiufeng, X., Dawei, D., Xiaoyan, L., Ying, Z., & Yaogao, F. (2015). Tempol alleviates intracerebral hemorrhage-induced brain injury possibly by attenuating nitrative stress. Neuroreport. 26(14):842-9. doi: 10.1097/WNR.0000000000000434
  • Wen, J., Li, H., Zhang, Y., Li, X., & Liu, F. (2015). Modification of HSP proteins and Ca2+ are responsible for the NO-derived peroxynitrite-mediated neurological damage in PC12 cell. International Journal of Clinical and Experimental Pathology, 8(5):4492-4502.
  • Wright, J. R., Colby, H. D,. & Miles, P. R. (1981). Cytosolic factors which affect microsomal lipid peroxidation in lung and liver. Archives of Biochemistry and Biophysics, 206: 296- 304. doi: 10.1016/0003-9861(81)90095-3.
Еще
Статья научная