Thermal-hydraulic performance analysis cold side of the plate heat exchanger using water-water

Автор: Wang Wei, Makeev Andrei, Povorov Sergei

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Технические науки

Статья в выпуске: 5 т.4, 2018 года.

Бесплатный доступ

In this research, the thermal-hydraulic performance of plate heat exchanger (Ridan HHN no. 04) used in domestic water system is investigated experimentally. The hot water inlet keeps temperature and flow rate constant at 70 C and 0.1 l/s, the cold-water inlet remained 110 C with different velocity. The heat transfer coefficient can reach maximum when velocity of cold water is 0.2 m/s. Then the convective heat transfer coefficient increases with enhancement of Reynolds number and it is stable after more than 1200. Moreover, it is observed that Fanning friction factor decreases with an increase of the Reynolds number and it is showed by the empirical correlation. Therefore, it is possible to find that the increase of the Peclet number results in an increase of the Nusselt number as well when Peclet number small than 200. Finally, we get reference idea how to be cooling in the particular case using plate heat exchanger.

Еще

Plate heat exchanger, thermal-hydraulic, convective heat transfer coefficient, peclet number

Короткий адрес: https://sciup.org/14112015

IDR: 14112015   |   DOI: 10.5281/zenodo.1246202

Список литературы Thermal-hydraulic performance analysis cold side of the plate heat exchanger using water-water

  • Shah R. K., Focke W. W. Plate heat exchangers and their design theory//Heat Transfer Equipment Design. 1988. V. 227. P. 254.
  • Bajura R. A. A model for flow distribution in manifolds//Journal of Engineering for power. 1971. V. 93. №1. С. 7-12.
  • Fang L. U., Luo Y., Yang S. Analytical and experimental investigation of flow distribution in manifolds for heat exchangers//Journal of Hydrodynamics, Ser. B. 2008. V. 20. №2. P. 179-185.
  • Acrivos A., Babcock B. D., Pigford R. L. Flow distributions in manifolds//Chemical Engineering Science. 1959. V. 10. №1-2. P. 112-124.
  • Martin H. A theoretical approach to predict the performance of chevron-type plate heat exchangers//Chemical Engineering and Processing: Process Intensification. 1996. V. 35. №4. P. 301-310.
  • Bassiouny M. K., Martin H. Flow distribution and pressure drop in plate heat exchangers-I U-type arrangement//Chemical Engineering Science. 1984. V. 39. №4. P. 693-700.
  • Akturk F. et al. Experimental investigation and performance analysis of gasketed-plate heat exchangers//Journal of Thermal Science and Technology. 2015. V. 35. №1. P. 43-52.
  • Yildirim M., Söylemez M. S. Thermo economical optimization of plate type of heat exchangers for waste heat recovery//Isi Bilimi ve Teknigi Dergisi/Journal of Thermal Science & Technology. 2016. V. 36. №1. P. 57-60.
  • Gulenoglu C., Akturk F., Aradag S., Uzol N. S., Kakac S. Experimental comparison of performances of three different plates for gasketed plate heat exchangers//International Journal of Thermal Sciences. 2014. V. 75. P. 249-256.
  • Khan T. S., Khan M. S., Chyu M. C., Ayub, Z. H. Experimental investigation of single phase convective heat transfer coefficient in a corrugated plate heat exchanger for multiple plate configurations//Applied Thermal Engineering. 2010. V. 30. №8-9. P. 1058-1065.
  • Focke W. W., Zachariades J., Olivier I. The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchangers//International Journal of Heat and Mass Transfer. 1985. V. 28. №8. P. 1469-1479.
  • Faizal M., Ahmed M. R. Experimental studies on a corrugated plate heat exchanger for small temperature difference applications//Experimental Thermal and Fluid Science. 2012. V. 36. P. 242-248.
  • Han X. H., Cui L. Q., Chen S. J., Chen G. M., Wang, Q. A numerical and experimental study of chevron, corrugated-plate heat exchangers//International Communications in Heat and Mass Transfer. 2010. V. 37. №8. P. 1008-1014.
  • Rush T. A., Newell T. A., Jacobi A. M. An experimental study of flow and heat transfer in sinusoidal wavy passages//International journal of heat and mass transfer. 1999. V. 42. №9. P. 1541-1553.
  • Khoshvaght-Aliabadi M., Hormozi F., Zamzamian A. Experimental analysis of thermal-hydraulic performance of copper-water nanofluid flow in different plate-fin channels//Experimental thermal and fluid science. 2014. V. 52. P. 248-258.
  • Khoshvaght-Aliabadi M., Khoshvaght M., Rahnama P. Thermal-hydraulic characteristics of plate-fin heat exchangers with corrugated/vortex-generator plate-fin (CVGPF)//Applied Thermal Engineering. 2016. V. 98. P. 690-701.
  • Tereda F. A., Srihari N., Sunden B., Das S. K. Experimental investigation on port-to-channel flow maldistribution in plate heat exchangers//Heat transfer engineering. 2007. V. 28. №5. P. 435-443.
  • Bobbili P. R., Sunden B., Das S. K. An experimental investigation of the port flow maldistribution in small and large plate package heat exchangers//Applied Thermal Engineering. 2006. V. 26. №16. P. 1919-1926.
  • Rao B. P., Das S. K. An experimental study on the influence of flow maldistribution on the pressure drop across a plate heat exchanger//Journal of fluids engineering. 2004. V. 126. №4. P. 680-691.
  • Mueller A. C., Chiou J. P. Review of various types of flow maldistribution in heat exchangers//Heat transfer engineering. 1988. V. 9. №2. P. 36-50.
  • Muley A., Manglik R. M. Experimental study of turbulent flow heat transfer and pressure drop in a plate heat exchanger with chevron plates//Journal of heat transfer. 1999. V. 121. №1. P. 110-117.
Еще
Статья научная