Тяжелые респираторно-вирусные инфекции: эпигенетические механизмы предрасположенности и возможности эпигенетически-направленной терапии

Автор: Айтбаев Кубаныч Авенович, Муркамилов Илхам Торобекович, Фомин Виктор Викторович, Муркамилова Жамила Абдилалимовна, Юсупов Фуркат Абдулахатович

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Медицинские науки

Статья в выпуске: 3 т.7, 2021 года.

Бесплатный доступ

Появление высокопатогенных штаммов вируса гриппа и коронавируса (CoV) стало причиной вспышек эпидемий и пандемий легочных заболеваний, характеризующихся тяжелым течением и высокой смертностью. Одной из основных задач интенсивной терапии является стратификация и минимизация риска развития полиорганной недостаточности (ПОН) у больных во время их пребывания в отделении интенсивной терапии (ОИТ). Эпигенетические механизмы контроля экспрессии генов, включая метилирование ДНК и РНК, модификации гистонов и некодирующие РНК, могут быть использованы вирусами, чтобы воспрепятствовать развитию реакций врожденного и адаптивного иммунитета, изменить адекватность воспалительного ответа и, тем самым, способствовать тяжелому течению легочного заболевания. Например, коронавирус ближневосточного респираторного синдрома (MERS-CoV) и вирус гриппа H5N1 могут влиять на презентацию антигена хозяина посредством метилирования ДНК и модификаций гистонов. Предположительно, те же механизмы могут быть задействованы и у пациентов с коронавирусной болезнью-2019 (COVID-19), у которых тоцилизумаб эпигенетически вызывал уменьшение повреждения микрососудов. Нацеливание на эпигенетические пути иммунных модуляторов (например, тоцилизумаб) или перепрофилированных препаратов (например, статины) могут обеспечить новые терапевтические возможности для контроля взаимодействий «вирус-хозяин» при развитии критического состояния. В обзоре представлена обновленная информация об эпигенетических механизмах и перепрофилированных препаратах, влияющих на эпигенетические пути, которые могут быть клинически эффективными для стратификации риска и полезными для лечения пациентов с тяжелыми респираторными вирусными инфекциями.

Еще

Коронавирус, COVID-19, эпигенетические препараты, эпигенетика, взаимодействия «хозяин-вирус», вирус гриппа, интенсивная терапия, острое респираторное заболевание

Короткий адрес: https://sciup.org/14120912

IDR: 14120912   |   DOI: 10.33619/2414-2948/64/13

Список литературы Тяжелые респираторно-вирусные инфекции: эпигенетические механизмы предрасположенности и возможности эпигенетически-направленной терапии

  • Jhung M. A., Swerdlow D., Olsen S. J., Jernigan D., Biggerstaff M., Kamimoto L., ... Finelli L. Epidemiology of 2009 pandemic influenza A (H1N1) in the United States // Clinical Infectious Diseases. 2011. V. 52. № suppl_1. P. S13-S26. https://doi.org/10.1093/cid/ciq008
  • Li Q., Zhou L., Zhou M., Chen Z., Li F., Wu H., ... Feng Z. Epidemiology of human infections with avian influenza A (H7N9) virus in China // New England Journal of Medicine. 2014. V. 370. №6. P. 520-532. https://doi.org/10.1056/NEJMoa1304617
  • De Wit E., Van Doremalen N., Falzarano D., Munster V. J. SARS and MERS: recent insights into emerging coronaviruses // Nature Reviews Microbiology. 2016. V. 14. №8. P. 523. https://doi .org/ 10.1038/nrmicro.2016.81
  • Perlman S. Another decade, another coronavirus. 2020. https://doi.org/10.1056/NEJMe2001126
  • Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., ... Tan W. A novel Coronavirus from patients with pneumonia in China, 2019 // New England journal of medicine. 2020. https://doi.org/10.1056/NEJMoa2001017
  • Nicholls J. M., Poon L. L., Lee K. C., Ng W. F., Lai S. T., Leung C. Y., ... Peiris J. M. Lung pathology of fatal severe acute respiratory syndrome // The Lancet. 2003. V. 361. №9371. P. 17731778. https://doi.org/10.1016/S0140-6736(03)13413-7
  • Bradley B. T., Bryan A. Emerging respiratory infections: The infectious disease pathology of SARS, MERS, pandemic influenza, and Legionella // Seminars in diagnostic pathology. WB Saunders, 2019. V. 36. №3. P. 152-159. https://doi.org/10.1053/j.semdp.2019.04.006
  • Ding Y., He L. I., Zhang Q., Huang Z., Che X., Hou J., ... Jiang S. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways // The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2004. V. 203. №2. P. 622-630. https://doi.org/10.1002/path.1560
  • Tisoncik J. R., Korth M. J., Simmons C. P., Farrar J., Martin T. R., Katze M. G. Into the eye of the cytokine storm // Microbiology and Molecular Biology Reviews. 2012. V. 76. №1. P. 16-32. https://doi.org/10.1128/MMBR.05015-11
  • Tavares L. P., Teixeira M. M., Garcia C. C. The inflammatory response triggered by Influenza virus: a two edged sword // Inflammation research. 2017. V. 66. №4. P. 283-302. https://doi .org/10.1007/s00011 -016-0996-0
  • Li G., Fan Y., Lai Y., Han T., Li Z., Zhou P., ... Wu J. Coronavirus infections and immune responses // Journal of medical virology. 2020. V. 92. №4. P. 424-432. https://doi.org/10.1002/jmv.25685
  • Zaim S., Chong J. H., Sankaranarayanan V., Harky A. COVID-19 and multi-organ response // Current problems in cardiology. 2020. P. 100618. https://doi .org/10.1016/j. cpcardiol.2020.100618
  • Schäfer A., Baric R. S. Epigenetic landscape during coronavirus infection // Pathogens. 2017. V. 6. №1. P. 8. https://doi.org/10.3390/pathogens6010008
  • Busslinger M., Tarakhovsky A. Epigenetic control of immunity // Cold Spring Harbor perspectives in biology. 2014. V. 6. №6. P. a019307. https://doi.org/10.1101/cshperspect.a019307
  • Crimi E., Cirri S., Benincasa G., Napoli C. Epigenetics mechanisms in multiorgan dysfunction syndrome // Anesthesia & Analgesia. 2019. V. 129. №5. P. 1422-1432. https://doi.org/10.1213/ANE.0000000000004331
  • Crimi E., Benincasa G., Cirri S., Mutesi R., Faenza M., Napoli C. Clinical epigenetics and multidrug-resistant bacterial infections: host remodelling in critical illness // Epigenetics. 2020. V. 15. №10. P. 1021-1034. https://doi.org/10.1080/15592294.2020.1748918
  • Comar C. E., Goldstein S. A., Li Y., Yount B., Baric R. S., Weiss S. R. Antagonism of dsRNA-induced innate immune pathways by NS4a and NS4b accessory proteins during MERS coronavirus infection // MBio. 2019. V. 10. №2. https://doi.org/10.1128/mBio.00319-19
  • Menachery V. D., Eisfeld A. J., Schäfer A., Josset L., Sims A. C., Proll S., ... Baric R. S. Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene responses // MBio. 2014. V. 5. №3. https://doi.org/10.1128/mBio.01174-14
  • Marazzi I., Ho J. S., Kim J., Manicassamy B., Dewell S., Albrecht R. A., ... Tarakhovsky A. Suppression of the antiviral response by an influenza histone mimic // Nature. 2012. V. 483. №7390. P. 428-433. https://doi.org/10.1038/nature10892
  • Qin S., Liu Y., Tempel W., Eram M. S., Bian C., Liu K., ... Min J. Structural basis for histone mimicry and hijacking of host proteins by influenza virus protein NS1 // Nature communications. 2014. V. 5. №1. P. 1-11. https://doi.org/10.1038/ncomms4952
  • Ivashchenko A., Rakhmetullina A., Akimniyazova A., Aisina D., Pyrkova A. The miRNA complexes against coronaviruses COVID-19, SARS-CoV, and MERS-CoV. 2020. https://doi.org/10.21203/rs.3.rs-19592/v1
  • Liu Z., Wang J., Xu Y., Guo M., Mi K., Xu R., ... Hu Z. Implications of the virus-encoded miRNA and host miRNA in the pathogenicity of SARS-CoV-2 //arXiv preprint arXiv:2004.04874. 2020.
  • Vachharajani V., Liu T., McCall C. E. Epigenetic coordination of acute systemic inflammation: potential therapeutic targets // Expert review of clinical immunology. 2014. V. 10. №9. P. 1141-1150. https://doi.org/10.1586/1744666X.2014.943192
  • Schiano C., Benincasa G., Franzese M., Della Mura N., Pane K., Salvatore M., Napoli C.Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases // Pharmacology & therapeutics. 2020. V. 210. P. 107514. https://doi .org/10.1016/j.pharmthera.2020.107514
  • Pascua P. N. Q., Choi Y. K. Zoonotic infections with avian influenza A viruses and vaccine preparedness: a game of" mix and match" // Clinical and experimental vaccine research. 2014. V. 3. №2. P. 140. http://dx.doi.org/10.7774/cevr.2014.3.2.140
  • Claas E. C., Osterhaus A. D., Van Beek R., De Jong J. C., Rimmelzwaan G. F., Senne D. A., ... Webster R. G. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus // The Lancet. 1998. V. 351. №9101. P. 472-477. https://doi.org/10.1016/S0140-6736(97)11212-0
  • Writing Committee of the World Health Organization (WHO) Consultation on Human Influenza A/H5. Avian influenza A (H5N1) infection in humans // New England Journal of Medicine. 2005. V. 353. №13. P. 1374-1385. https://doi.org/10.1056/NEJMra052211
  • Abdel-Ghafar A. N., Chotpitayasunondh T., Gao Z., Hayden F. G., Nguyen D. H., de Jong M. D., ... Uyeki T. M. Writing committee of the second world health organization consultation on clinical aspects of human infection with avian influenza A (H5N1) virus. Update on avian influenza A (H5N1) virus infection in humans // N Engl J Med. 2008. V. 358. №3. P. 261-273.
  • Dominguez-Cherit G., Lapinsky S. E., Macias A. E., Pinto R., Espinosa-Perez L., de la Torre A., ... Fowler R. A. Critically ill patients with 2009 influenza A (H1N1) in Mexico // Jama. 2009. V. 302. №17. P. 1880-1887. https://doi.org/10.1001/jama.2009.1536
  • Fatimah S. et al. Bridge Emergence of a Novel Swine-Origin Influenza A (H1N1) Virus in Humans. Novel Swine-Origin Influenza A (H1N1) Virus Investigation // The new England journal of medicine. 2009. V. 360. №25. P. 2605-2615.
  • Jain S., Kamimoto L., Bramley A. M., Schmitz A. M., Benoit S. R., Louie J., ... Finelli L. Hospitalized patients with 2009 H1N1 influenza in the United States, April-June 2009 // New England journal of medicine. 2009. V. 361. №20. P. 1935-1944. https://doi.org/10.1056/NEJMoa0906695
  • Kumar A. et al. Critically ill patients with 2009 influenza A (H1N1) infection in Canada // Jama. 2009. V. 302. №17. P. 1872-1879. https://doi.org/10.1001/jama.2009.149
  • ANZIC Influenza Investigators. Critical care services and 2009 H1N1 influenza in Australia and New Zealand // New England Journal of Medicine. 2009. V. 361. №20. P. 1925-1934. https://doi.org/10.1056/NEJMoa0908481
  • Dominguez-Cherit G., De la Torre A., Rishu A., Pinto R., Namendys-Silva S. A., Camacho-Ortiz A., ... Fowler R. A. Influenza A (H1N1pdm09)-related critical illness and mortality in Mexico and Canada, 2014 // Critical care medicine. 2016. V. 44. №10. P. 1861-1870. https://doi.org/10.1097/CCM.0000000000001830
  • Cui J., Li F., Shi Z. L. Origin and evolution of pathogenic coronaviruses // Nature Reviews Microbiology. 2019. V. 17. №3. P. 181-192. https://doi.org/10.1038/s41579-018-0118-9
  • Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., ... Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding // The lancet. 2020. V. 395. №10224. P. 565-574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Liu J., Zheng X., Tong Q., Li W., Wang B., Sutter K., ... Yang D. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV // Journal of medical virology. 2020. V. 92. №5. P. 491-494. https://doi.org/10.1002/jmv.25709
  • Li J. Y., You Z., Wang Q., Zhou Z. J., Qiu Y., Luo R., Ge X. Y. The epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future // Microbes and infection. 2020. V. 22. №2. P. 80-85. https://doi.org/10.10167j.micinf.2020.02.002
  • Yin Y., Wunderink R. G. MERS, SARS and other coronaviruses as causes of pneumonia // Respirology. 2018. V. 23. №2. P. 130-137. https://doi.org/10.1111/resp.13196
  • Hui D. S., Azhar E. I., Kim Y. J., Memish Z. A., Oh M. D., Zumla A. Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission // The Lancet Infectious Diseases. 2018. V. 18. №8. P. e217-e227. https://doi.org/10.1016/S1473-3099(18)30127-0
  • Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., ... Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // The lancet. 2020. V. 395. №10223. P. 497506. https://doi.org/10.1016/S0140-6736(20)30183-5
  • Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., ... Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study // The lancet. 2020. V. 395. №10223. P. 507-513. https://doi.org/10.1016/S0140-6736(20)30211-7
  • Guan W. J., Ni Z. Y., Hu Y., Liang W. H., Ou C. Q., He J. X., ... Zhong N. S. Clinical characteristics of coronavirus disease 2019 in China // New England journal of medicine. 2020. V. 382. №18. P. 1708-1720. https://doi.org/10.1056/NEJMoa2002032
  • Richardson S., Hirsch J. S., Narasimhan M., Crawford J. M., McGinn T., Davidson K. W., ... Zanos T. P. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area // Jama. 2020. V. 323. №20. P. 2052-2059. https://doi.org/10.1001/jama.2020.6775
  • Mehra M. R., Desai S. S., Kuy S., Henry T. D., Patel A. N. Cardiovascular disease, drug therapy, and mortality in Covid-19 // New England Journal of Medicine. 2020. V. 382. №25. P. e102. https://doi.org/10.1056/NEJMoa2007621
  • Grasselli G., Zangrillo A., Zanella A., Antonelli M., Cabrini L., Castelli A., ... Pesenti A. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy // Jama. 2020. V. 323. №16. P. 1574-1581. https://doi.org/10.1001/jama.2020.5394
  • Chen T., Wu D. I., Chen H., Yan W., Yang D., Chen G., ... Ning Q. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study // bmj. 2020. V. 368. https://doi.org/10.1136/bmj.m1091
  • Shi H., Han X., Jiang N., Cao Y., Alwalid O., Gu J., ... Zheng C. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study // The Lancet infectious diseases. 2020. V. 20. №4. P. 425-434. https://doi.org/10.1016/S1473-3099(20)30086-4
  • Tian S., Xiong Y., Liu H., Niu L., Guo J., Liao M., Xiao S. Y. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies // Modern Pathology. 2020. V. 33. №6. P. 1007-1014. https://doi.org/10.1038/s41379-020-0536-x
  • Ng D. L., Al Hosani F., Keating M. K., Gerber S. I., Jones T. L., Metcalfe M. G., ... Zaki S. R. Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014 // The American journal of pathology. 2016. V. 186. №3. P. 652-658. https://doi.org/10.10167j.ajpath.2015.10.024
  • Gu J., Gong E., Zhang B., Zheng J., Gao Z., Zhong Y., ... Leong A. S. Y. Multiple organ infection and the pathogenesis of SARS // Journal of Experimental Medicine. 2005. V. 202. №3. P. 415-424. https://doi.org/10.1084/jem.20050828
  • Zhang H., Penninger J. M., Li Y., Zhong N., Slutsky A. S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target // Intensive care medicine. 2020. V. 46. №4. P. 586-590. https://doi.org/10.1007/s00134-020-05985-9
  • Shang J., Wan Y., Luo C., Ye G., Geng Q., Auerbach A., Li F. Cell entry mechanisms of SARS-CoV-2 // Proceedings of the National Academy of Sciences. 2020. V. 117. №21. P. 1172711734. https://doi.org/10.1073/pnas.2003138117
  • Meyerholz D. K., Lambertz A. M., McCray Jr P. B. Dipeptidyl peptidase 4 distribution in the human respiratory tract: implications for the Middle East respiratory syndrome // The American journal of pathology. 2016. V. 186. №1. P. 78-86. https://doi.org/10.1016/j.ajpath.2015.09.014
  • Wrapp D., Wang N., Corbett K. S., Goldsmith J. A., Hsieh C. L., Abiona O., ... McLellan J. S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation // Science. 2020. V. 367. №6483. P. 1260-1263. https://doi.org/10.1126/science.abb2507
  • Coutard B., Valle C., de Lamballerie X., Canard B., Seidah N. G., Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade // Antiviral research. 2020. V. 176. P. 104742. https://doi .org/10.1016/j. antiviral.2020.104742
  • Imai Y., Kuba K., Rao S., Huan Y., Guo F., Guan B., ... Penninger J. M. Angiotensin-converting enzyme 2 protects from severe acute lung failure // Nature. 2005. V. 436. №7047. P. 112116. https://doi .org/10.1038/nature03712
  • Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B., ... Penninger J. M. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury // Nature medicine. 2005. V. 11. №8. P. 875-879. https://doi.org/10.1038/nm1267
  • Josset L., Menachery V. D., Gralinski L. E., Agnihothram S., Sova P., Carter V. S., ... Katze M. G. Cell host response to infection with novel human Coronavirus EMC predicts potential antivirals and important differences with SARS Coronavirus // MBio. 2013. V. 4. №3. https://doi.org/10.1128/mBio.00165-13
  • Faure E., Poissy J., Goffard A., Fournier C., Kipnis E., Titecat M., ... Guery B. Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside? // PloS one. 2014. V. 9. №2. P. e88716. https://doi.org/10.1371/journal.pone.0088716
  • Wu R., Wang L., Kuo H. C. D., Shannar A., Peter R., Chou P. J., ... Kong A. N. An update on current therapeutic drugs treating COVID-19 // Current pharmacology reports. 2020. V. 6. №3. P. 56-70. https://doi.org/10.1007/s40495-020-00216-7
  • Gómez-Díaz E., Jordá M., Peinado M. A., Rivero A. Epigenetics of host-pathogen interactions: the road ahead and the road behind // PLoS Pathog. 2012. V. 8. №11. P. e1003007. https://doi .org/10.1371/journal.ppat.1003007
  • Iwasaki A., Foxman E. F., Molony R. D. Early local immune defences in the respiratory tract // Nature Reviews Immunology. 2017. V. 17. №1. P. 7. https://doi.org/10.1038/nri.2016.117
  • Chiu C., Openshaw P. J. Antiviral B cell and T cell immunity in the lungs // Nature immunology. 2015. V. 16. №1. P. 18-26. https://doi.org/10.1038/ni.3056
  • Li X., Fu Z., Liang H., Wang Y., Qi X., Ding M., ... Zhang C. Y. H5N1 influenza virus-specific miRNA-like small RNA increases cytokine production and mouse mortality via targeting poly (rC)-binding protein 2 // Cell research. 2018. V. 28. №2. P. 157-171. https://doi.org/10.1038/cr.2018.3
  • Sawalha A. H., Zhao M., Coit P., Lu Q. Epigenetic dysregulation of ACE2 and interferonregulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients // Clinical Immunology. 2020. V. 215. P. 108410. https://doi.org/10.1016/j.clim.2020.108410
  • Varble A., Chua M. A., Perez J. T., Manicassamy B., García-Sastre A. Engineered RNA viral synthesis of microRNAs // Proceedings of the National Academy of Sciences. 2010. V. 107. №25. P. 11519-11524. https://doi.org/10.1073/pnas.1003115107
  • Umbach J. L., Yen H. L., Poon L. L., Cullen B. R. Influenza A virus expresses high levels of an unusual class of small viral leader RNAs in infected cells // MBio. 2010. V. 1. №4. https://doi.org/10.1128/mBio.00204-10
  • Aguado L. C., tenOever B. RNA virus building blocks—miRNAs not included // PLoS pathogens. 2018. V. 14. №5. P. e1006963. https://doi.org/10.1371/journal.ppat.1006963
  • Chu H., Chan J. F. W., Wang Y., Yuen T. T. T., Chai Y., Hou Y., ... Yuen K. Y. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19 // Clinical Infectious Diseases. 2020. V. 71. №6. P. 1400-1409. https://doi.org/10.1093/cid/ciaa410
  • Corley M. J., Ndhlovu L. C. DNA methylation analysis of the COVID-19 host cell receptor, angiotensin I converting enzyme 2 gene (ACE2) in the respiratory system reveal age and gender differences. 2020. https://doi.org/10.20944/preprints202003.0295.v1
  • Nehme Z., Pasquereau S., Herbein G. Control of viral infections by epigenetic-targeted therapy // Clinical epigenetics. 2019. V. 11. №1. P. 1-17. https://doi.org/10.1186/s13148-019-0654-9
  • Ivanov M., Barragan I., Ingelman-Sundberg M. Epigenetic mechanisms of importance for drug treatment // Trends in pharmacological sciences. 2014. V. 35. №8. P. 384-396. https://doi.org/10.1016/j.tips.2014.05.004
  • Xu Y., Liu L. Curcumin alleviates macrophage activation and lung inflammation induced by influenza virus infection through inhibiting the NF-kB signaling pathway // Influenza and other respiratory viruses. 2017. V. 11. №5. P. 457-463. https://doi.org/10.1111/irv.12459
  • Gordon D. E., Jang G. M., Bouhaddou M., Xu J., Obernier K., White K. M., ... Krogan N. J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing // Nature. 2020. V. 583. №7816. P. 459-468. https://doi.org/10.1038/s41586-020-2286-9
  • Lee C. S., Yi E. H., Lee J. K., Won C., Lee Y. J., Shin M. K., ... Ye S. K. Simvastatin suppresses RANTES-mediated neutrophilia in polyinosinic-polycytidylic acid-induced pneumonia // European Respiratory Journal. 2013. V. 41. №5. P. 1147-1156. https://doi.org/10.1183/09031936.00050612
  • Yuan S. Statins may decrease the fatality rate of Middle East respiratory syndrome infection // MBio. 2015. V. 6. №4. https://doi.org/10.1128/mBio.01120-15
  • Diaz A., Romero M., Vazquez T., Lechner S., Blomberg B. B., Frasca D. Metformin improves in vivo and in vitro B cell function in individuals with obesity and Type-2 Diabetes // Vaccine. 2017. V. 35. №20. P. 2694-2700. https://doi.org/10.1016/j.vaccine.2017.03.078
  • Ruiz-Limon P., Ortega R., de la Rosa I. A., del Carmen Abalos-Aguilera M., Perez-Sanchez C., Jimenez-Gomez Y., ... Barbarroja N. Tocilizumab improves the proatherothrombotic profile of rheumatoid arthritis patients modulating endothelial dysfunction, NETosis, and inflammation // Translational Research. 2017. V. 183. P. 87-103. https://doi.org/10.1016/j.trsl.2016.12.003
  • Khaerunnisa S., Kurniawan H., Awaluddin R., Suhartati S., Soetjipto S. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. 2020. https://doi.org/10.20944/preprints202003.0226.v1
  • Yan R., Zhang Y., Li Y., Xia L., Guo Y., Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2 // Science. 2020. V. 367. №6485. P. 1444-1448. https://doi.org/10.1126/science.abb2762
  • Napoli C., Benincasa G., Schiano C., Salvatore M. Differential epigenetic factors in the prediction of cardiovascular risk in diabetic patients // European Heart Journal-Cardiovascular Pharmacotherapy. 2020. V. 6. №4. P. 239-247. https://doi.org/10.1093/ehjcvp/pvz062
  • Black S., Nicolay U., Del Giudice G., Rappuoli R. Influence of statins on influenza vaccine response in elderly individuals // The Journal of infectious diseases. 2016. V. 213. №8. P. 1224-1228. https://doi.org/10.1093/infdis/jiv456
  • Mehrbod P., Omar A. R., Hair-Bejo M., Haghani A., Ideris A. Mechanisms of action and efficacy of statins against influenza // BioMed research international. 2014. V. 2014. https://doi.org/10.1155/2014/872370
  • Omer S. B., Phadke V. K., Bednarczyk R. A., Chamberlain A. T., Brosseau J. L., Orenstein W. A. Impact of statins on influenza vaccine effectiveness against medically attended acute respiratory illness // The Journal of infectious diseases. 2016. V. 213. №8. P. 1216-1223.https://doi.org/10.1093/infdis/jiv457
  • McLean H. Q., Chow B. D., VanWormer J. J., King J. P., Belongia E. A. Effect of statin use on influenza vaccine effectiveness // The Journal of infectious diseases. 2016. V. 214. №8. P. 1150-1158. https://doi.org/10.1093/infdis/jiw335
  • Izurieta H. S., Chillarige Y., Kelman J. A., Forshee R., Qiang Y., Wernecke M., ... Shay D. K. Statin use and risks of influenza-related outcomes among older adults receiving standard-dose or high-dose influenza vaccines through Medicare during 2010-2015 // Clinical Infectious Diseases. 2018. V. 67. №3. P. 378-387. https://doi.org/10.1093/cid/ciy100
  • DiazGranados C. A., Dunning A. J., Kimmel M., Kirby D., Treanor J., Collins A., ... Talbot H. K. Efficacy of high-dose versus standard-dose influenza vaccine in older adults // New England Journal of Medicine. 2014. V. 371. №7. P. 635-645. https://doi.org/10.1056/NEJMoa1315727
  • Makris D., Manoulakas E., Komnos A., Papakrivou E., Tzovaras N., Hovas A., ... Zakynthinos E. Effect of pravastatin on the frequency of ventilator-associated pneumonia and on intensive care unit mortality: open-label, randomized study // Critical care medicine. 2011. V. 39. №11. P. 2440-2446. https://doi.org/10.1097/CCM.0b013e318225742c
  • Douglas I., Evans S., Smeeth L. Effect of statin treatment on short term mortality after pneumonia episode: cohort study // Bmj. 2011. V. 342. https://doi.org/10.1136/bmj.d1642
  • Papazian L., Roch A., Charles P. E., Penot-Ragon C., Perrin G., Roulier P., ... Forel J. M. Effect of statin therapy on mortality in patients with ventilator-associated pneumonia: a randomized clinical trial // Jama. 2013. V. 310. №16. P. 1692-1700. https://doi.org/10.1001/jama.2013.280031
  • Benincasa G., Cuomo O., Vasco M., Vennarecci G., Canonico R., Della Mura N., ... Napoli C. Epigenetic-sensitive challenges of cardiohepatic interactions: clinical and therapeutic implications in heart failure patients // European Journal of Gastroenterology & Hepatology. 2020. https://doi.org/10.1097/meg.0000000000001867
  • Fan Z., Chen L., Li J., Cheng X., Yang J., Tian C., ... Cheng J. Clinical features of COVID-19-related liver functional abnormality // Clinical Gastroenterology and Hepatology. 2020. V. 18. №7. P. 1561-1566. https://doi.org/10.1016/j.cgh.2020.04.002
  • Xu L., Liu J., Lu M., Yang D., Zheng X. Liver injury during highly pathogenic human coronavirus infections // Liver International. 2020. V. 40. №5. P. 998-1004. https://doi.org/10.1111/liv.14435
  • Gallelli L., Falcone D., Scaramuzzino M., Pelaia G., D'Agostino B., Mesuraca M., ... Savino R. Effects of simvastatin on cell viability and proinflammatory pathways in lung adenocarcinoma cells exposed to hydrogen peroxide // BMC Pharmacology and Toxicology. 2014. V. 15. №1. P. 1-12. https://doi.org/10.1186/2050-6511-15-67
  • Yuan X., Deng Y., Guo X., Shang J., Zhu D., Liu H. Atorvastatin attenuates myocardial remodeling induced by chronic intermittent hypoxia in rats: partly involvement of TLR-4/MYD88 pathway // Biochemical and biophysical research communications. 2014. V. 446. №1. P. 292-297. https://doi.org/10.1016/j.bbrc.2014.02.091
  • Saenwongsa W., Nithichanon A., Chittaganpitch M., Buayai K., Kewcharoenwong C., Thumrongwilainet B., ... Lertmemongkolchai G. Metformin-induced suppression of IFN-a via mTORC1 signalling following seasonal vaccination is associated with impaired antibody responses in type 2 diabetes // Scientific reports. 2020. V. 10. №1. P. 1-12. https://doi.org/10.1038/s41598-020-60213-0
  • Lindmark E., Diderholm E., Wallentin L., Siegbahn A. Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy // Jama. 2001. V. 286. №17. P. 2107-2113. https://doi.org/10.1001/jama.286.17.2107
  • Napoli C., Tritto I., Benincasa G., Mansueto G., Ambrosio G. Cardiovascular involvement during COVID-19 and clinical implications in elderly patients. A review // Annals of Medicine and Surgery. 2020. https://doi.org/10.1016/j.amsu.2020.07.054
  • Mansueto G., Niola M., Napoli C. Can COVID 2019 disease induces a specific cardiovascular damage or it exacerbates pre-existing cardiovascular diseases? // Pathology-Research and Practice. 2020. P. 153086. https://doi.org/10.1016/j.prp.2020.153086
  • Zhou Y., Hou Y., Shen J., Huang Y., Martin W., Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2 // Cell discovery. 2020. V. 6. №1. P. 118. https://doi .org/10.103 8/s41421 -020-0153 -3
  • Silverman E. K., Schmidt H. H., Anastasiadou E., Altucci L., Angelini M., Badimon L., ... Baumbach J. Molecular networks in Network Medicine: Development and applications // Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 2020. V. 12. №6. P. e1489. https://doi.org/10.1002/wsbm.1489
Еще
Статья обзорная