To the question of forecasting the technical condition of low-thrust liquid rocket engines
Автор: Komlev G. V., Mitrofanova A. S.
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Aviation and spacecraft engineering
Статья в выпуске: 1 vol.21, 2020 года.
Бесплатный доступ
In the rapidly developing space and rocket industry, spacecrafts are being equipped with low-thrust liquid rocket engines. Нigh requirements are imposed on the reliability, efficiency and economy of fuel use for this type of rocket engine. To ensure monitoring of the characteristics of spacecrafts, a functional diagnostic system is used, which includes telemetry and analytical data processing. Telemetry performs the functions of receiving and transmitting information. Information processing is carried out in computer centers located on the spacecraft and the Earth. The most promising computing tool capable of predicting time series and classifying a large amount of interconnected data is considered an artificial neural network. In this regard, the subject of research in the work is data processing methods based on an artificial neural network. The purpose of the work is to develop a method for forecasting the technical condition of low-thrust liquid rocket engines using an artificial neural network. The relevance of research on the use of a neural network in the system of functional diagnostics of low-thrust liquid rocket engines for spacecraft is explained in the introduction. In the main part, an analysis of many telemetric data of the rocket engine is carried out and their strength in the forecast of the main diagnostic parameters is determined. It is proposed to use traction, specific impulse, and temperature of the structure as diagnostic parameters. The prognostic capabilities of the neural network were investigated and a schematic diagram of a method for predicting the technical condition of a low-thrust liquid rocket engine was developed. In the developed method, at the first stage, the neural network performs the approximation of the function and extrapolates the time series of telemetric data; the second stage determines the probable class of the technical condition of the engine. The conclusion outlines a plan for further experimental research in the study area and provides recommendations on the development and improvement of algorithms for functioning of artificial neural networks as part of the functional diagnostics system of the spacecraft. Due to the generalized nature of the methodological schemes, the results of the work can be applied to any type of rocket engines and used at all enterprises of the rocket and space industry of the corresponding profile.
Rocket engine, telemetry, neural network, diagnostic parameter, approximation, classification, forecasting.
Короткий адрес: https://sciup.org/148321723
IDR: 148321723 | DOI: 10.31772/2587-6066-2020-21-1-78-84
Список литературы To the question of forecasting the technical condition of low-thrust liquid rocket engines
- Ageenko Ju. I., Pegin I. V. Confirmation of the energy efficiency of liquid propellant rocket engines with a deflector centrifugal mixture formation scheme. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta. 2014, No. 5, Iss. 3, P. 46–54 (In Russ.).
- Sirant A. L. Issledovanie vliyaniya neideal'nostey rabochego impul'sa zhidkostnyh raketnyh dvigateley maloy tyagi na dinamiku malogo kosmicheskogo apparata. Kand. Diss. Investigation of the effect of imperfect working impulse of liquid propulsion thruster on the dynamics of a small spacecraft. Cand. Diss. Samara, 2008, 153 p.
- Hruckij O. V. Prognozirovanie tehnicheskogo sostojanija funkcional'no-samostojatel'nyh elementov sudovoy energeticheskoy ustanovki. Kand. Diss. Prediction of the technical condition of functionally independent elements of a ship power plant. Cand. Diss.. SPb., 1996, 263 p.
- Gerasimova D. S., Savina M. G., Gejman V. N. Updating and extending aircraft technology resources]. Aktual'nye problemy aviatsii i kosmonavtiki. 2015, Vol. 1, P. 686–688 (In Russ.).
- Martirosov D. S., Kolomencev A. I. Functional diagnostics of LRE in real time]. Aviatsionnokosmicheskaya tekhnika i tekhnologiya. 2012, No. 7, P. 197–201 (In Russ.).
- Martirosov D. S., Sin'kov S. A. A method for evaluating the maximum achievable accuracy of deter mining the parameters of the elements of rocket engines in their functional diagnostics. Tr. NPO Energomash im. akad. V. P. Glushko. 2005, No. 23, P. 151–160 (In Russ.).
- Kolbaja T. Ch., Pasmurnov S. M., Jakush D. Ju. Development of technology for creating a system for diagnosing and emergency protection of liquid rocket engines. Inzhenernyy zhurnal: Nauka i innovatsii. 2016, No. 8. Available at: http://www.engjournal.ru/catalog/arse/teje/1524.html (In Russ.).
- Bondar' A. I., Pasmurnov S. M., Jakush D. Ju. Software and software for the emergency protection and control system for rocket engines and the procedure for testing it. Nauka i tehnologii. Sb. nauch. tr. RAN. 2015, Vol. 5, P. 137 (In Russ.).
- Skovoroda-Luzin V. I. Telemetriya. Glaza i ushi Glavnogo konstruktora Telemetry. Eyes and ears of the Chief Designer. Moscow, Overley Publ., 2009, 320 p.
- Polenov D. Ju. Jevoljucija telemetrii v raketnoj tehnike. The evolution of telemetry in rocket technology. Molodoy uchenyy. 2014, No. 6, P. 216–218 (In Russ.).
- Levochkin P. S., Martirosov D. S., Bukanov V. T. Problems of functional diagnostics of liquid rocket engines. Vestnik MGTU im. N. Je. Baumana. Ser. “Mashinostroenie”. 2013, No. 1, P. 72–88 (In Russ.).
- Gorban' A. N., Rossiev D. A. Neyronnye seti na personal'nom komp'yutere Neural networks on a personal computer. Novosibirsk, Nauka Publ., 1996, 276 p.
- Kruglov V. V., Borisov V. V. Iskusstvennye neyronnye seti. Teoriya i praktika Artificial neural networks. Theory and practice. Moscow, Goryachaya liniya Publ., 2002, 382 p.
- Ljubimova T. V., Gorelova A. V. The solution to the problem of forecasting using neural networks. Innovacionnaya nauka. 2015, No. 4, P. 39–43 (In Russ.).
- Kolomencev A. I., Hohlov A. N. Optimal test planning of liquid propulsion rocket engines of small thrusts to determine their main parameters and characteristics. Vestnik PNIPU. Aerokosmicheskaya tekhnika. 2016, No. 47, P. 109–122 (In Russ.).
- Dobrovol'skij M. V. Zhidkostnye raketnye dvigateli. Osnovy proektirovaniya Liquid rocket engines. Design basics. Moscow, Izd-vo MGTU im. N. Je. Baumana Publ., 2006, 488 p.
- Druzhin A. N. Teplovaya i energeticheskaya effektivnost' do i sverkhzvukovykh gazovykh zaves v raketnykh dvigatelyakh maloy tyagi. Kand. Diss. Thermal and energy efficiency before and supersonic gas curtains in small thrust rocket engines. Cand. Diss. Samara, 2002, 213 p.
- Majorova V. I., Grishko D. A., Remen' B. A., Ambarcumov A. A., Kaldarov I. S. Automation of receiving and processing backup telemetric information from space. Vestnik MGTU im. N. Je. Baumana. 2013. No. 1 (90), Р. 89–99 (In Russ.).
- Lukin F. A., Shahmatov A. V., Mushovec K. V., Zelenkov P. V. The mechanism of controlled telemetry of a spacecraft. Vestnik SibGAU. 2012, No. 5 (45), Р. 140–144 (In Russ.).
- Il'in V. A. Teleupravlenie i teleizmerenie Remote control and telemetry Moscow, Jenergoizdat Publ., 1982, 560 р.
- Milicin A. V., Samsonov V. N., Hodak V. A. et al. Otobrazhenie informacii v Centre upravleniya kosmicheskimi poletami Display of information in the Space Flight Control Center. Moscow, Radio i svyaz Publ, 1982, 192 р.
- Emel'janova Ju. G., Talalaev A. A., Fralenko V. P., Hachumov V. M. Neural network method for detecting malfunctions in space subsystems. Trudy mezhdunarodnoy konferencii “Programmnye sistemy: teorija i prilozheniya” Proceedings of the international conference “Software systems: theory and applications” (Pereslavl' Zalesskiy, Russia, may 2009). 2009, Р. 133–143 (In Russ.).
- Efimov V. V., Kozyrev G. I., Loskutov A. I. et al. Neyrokomp'yutery v kosmicheskoy tekhnike Neurocomputers in space technology. Radio engineering. Moscow, 2004, 317 р.
- Efimov V. V. Neurointellectualization of onboard control systems for spacecraft surveillance. Mehatronika, avtomatizacija, upravlenie. 2006, No. 10, Р. 2–15 (In Russ.).
- Labinskij A. Ju., Utkin O. V. To the question of approximation of a function by a neural network]. Prirodnye i tehnogennye riski (fiziko matematicheskie i prikladnye aspekty). 2016, No. 1, P. 5–11 (In Russ.).
- Rutkovskij L., Pilin'skij M., Rutkovskaja D. Neyronnye seti, geneticheskie algoritmy i nechetkie sistemy Neural networks, genetic algorithms and fuzzy systems. Moscow, Telekom Publ., 2004, 385 p.
- Tarhov D. A. Neyronnye seti kak sredstvo matematicheskogo modelirovaniya Neural networks as a means of mathematical modeling. Moscow, Radiotehnika Publ., 2006, 48 p.