Топографические условия дренируемости почвенного покрова Владимирского Ополья

Автор: Шилов П. М.

Журнал: Бюллетень Почвенного института им. В.В. Докучаева @byulleten-esoil

Рубрика: Статьи

Статья в выпуске: 105, 2020 года.

Бесплатный доступ

В статье продемонстрирован подход к цифровому картографированию топографических условий дренируемости почвенного покрова Владимирского Ополья. Топографические условия модельного участка охарактеризованы цифровой моделью рельефа и производными от нее локальными и региональными морфометрическими величинами с разрешением сетки 30 × 30 м. Разнообразие условий переувлажнения описано 193 точками почвенного обследования с морфологической характеристикой степени дренируемости, из которых 170 принадлежит почвенным разрезам Госкомзема РСФСР. На основе сопоставления почв, ранжированных по степени переувлажнения, и морфометрических характеристик рельефа средствами канонического дискриминантного анализа рассчитан топографический фактор дренируемости (ТФД), объясняющий 70% изменчивости гидроморфизма почв. При помощи ТФД численно обобщено влияние характеристик формы рельефа, высоты базиса эрозии, соотношения водосборной площади и крутизны (топографический индекс влажности) на дифференциацию избыточного увлажнения почвенного покрова. В диапазоне ТФД > -0.5 упорядочены серые лесные почвы, приуроченные к дренируемым моренно-эрозионным равнинам, полого-покатым и крутым склонам долин. Область ТФД

Еще

Гидроморфизм, серые лесные почвы, канонический дискриминантный анализ

Короткий адрес: https://sciup.org/143173099

IDR: 143173099   |   DOI: 10.19047/0136-1694-2020-105-28-56

Список литературы Топографические условия дренируемости почвенного покрова Владимирского Ополья

  • Агроклиматические ресурсы Владимирской области / О.Б. Зворыкина, Т.И. Бурцева, К.Т. Васека и др. М.: Упр. гидрометеорол. службы центр. областей, 1968. 138 с.
  • Агроприродное и сельскохозяйственное районирование Нечерноземной зоны европейской части РСФСР / Л.В. Ромина, Н.А. Гвоздецкий, К.В. Зворыкин и др. М.: Изд-во МГУ, 1987. 270 с.
  • Алифанов В.М. Серые лесные почвы центра Русской равнины. Историко-генетический анализ // Эволюция и возраст почв СССР. Пущино, 1986. С. 155-162.
  • Алифанов В.М., Гугалинская Л.А. Палеокриогенез и структура почвенного покрова Русской равнины // Почвоведение. 1993. № 7. С. 65-75.
  • Алифанов В.М., Лошакова Н.А. Водный режим серых лесных почв // Почвоведение. 1981. № 4. С. 58-70.
  • Ахромеев Л.М. Природа, генезис, история развития и ландшафтная структура ополий Центральной России. Брянск: РИО Брянского государственного университета, 2008. 182 с.
  • Величко А.А., Морозова Т.Д., Нечаев В.П., Порожнякова О.М. Палеокриогенез, почвенный покров и земледелие. М.: Изд-во "Наука", 1996. 145 с.
  • Гулинова Н.В. Агроклиматические ресурсы Нечерноземной зоны РСФСР // Агрометеорологические условия и продуктивность сельского хозяйства Нечерноземной зоны РСФСР. Л.: Гидрометеоиздат, 1978. С. 17-32.
  • Джонгман Р.Г.Г. Анализ данных в экологии сообществ и ландшафтов. М.: РАСХН, 1999. 306 с.
  • Добровольский Г.В., Урусевская И.С. География почв. М.: Изд-во МГУ, 1984. 416 с.
  • Зайдельман Ф.Р. Гидрологический режим почв Нечерноземной зоны России (генетические, агрономические и мелиоративные аспекты). Л.: Гидрометеоиздат, 1985. 328 с.
  • Зайдельман Ф.Р. Режим и условия мелиорации заболоченных почв. М.: Колос, 1975. 321 с.
  • Классификация и диагностика почв СССР. М.: Изд-во "Колос", 1977. 221 с.
  • Козлов Д.Н., Сорокина Н.П. Традиции и инновации в крупномасштабной почвенной картографии // Цифровая почвенная картография: теоретические и экспериментальные исследования. М.: Почв. ин-т им. В.В. Докучаева, 2012. С. 35-57.
  • Ландшафты Владимирской области: учеб. пособие в 2 ч. Ч. 1. Ландшафты Смоленско-Московской провинции / В.В. Романов. Владимир: Изд-во Владим. гос. ун-та, 2008. 56 с.
  • Липкина Г.С. Влияние почвообразующих пород и рельефа на плодородие дерново-подзолистых почв Центрального района России. Автореф. дис. … канд. с.-х. наук: 03.00.27. М., 1993. 44 с.
  • Макеев А.О., Дубровина И.В. География, генезис и эволюция почв Владимирского ополья // Почвоведение. 1990. № 7. С. 5-25.
  • Минаев Н.В., Никитин А.А., Козлов Д.Н. Идентификация масштабных уровней организации рельефа пашни // Бюллетень Почвенного института имени В.В. Докучаева. 2019. Вып. 96. С. 3-21.
  • DOI: 10.19047/0136-1694-2019-96-3-21
  • Модель адаптивно-ландшафтного земледелия Владимирского ополья / В.И. Кирюшин, А.Л. Иванов. М.: "Агроконсалт", 2004. 456 с.
  • Морев Д.В. Агроэкологическая оценка земель в условиях зонального ряда агроландшафтов с повышенной пестротой почвенного покрова. Дис. … канд. биол. наук: 03.02.08. М., 2017. 137 с.
  • Николаев В.А. Парагенезис полесий-ополий Центральной России // Вестник Московского университета. География. 2013. № 5. С. 45-50.
  • Почвенный покров Нечерноземья и его рациональное использование. М: Агропромиздат, 1986. 245 с.
  • Почвы и рекомендации по их использованию Владимирской государственной областной сельскохозяйственной опытной станции Суздальского района Владимирской области. Владимир: Центргипрозем (Владимирский филиал), 1991. 65 с.
  • Прохорова З.А., Сорокина Н.П. Влияние компонентов элементарной структуры дерново-подзолистых почв на продуктивность сельскохозяйственных растений // Бюллетень Почвенного института имени В.В. Докучаева. 1975. Вып. 8. С. 178-190.
  • Пузаченко Ю.Г. Математические методы в экологических и географических исследованиях. М.: Издательский центр "Академия", 2004. 416 с.
  • Пузаченко М.Ю., Пузаченко Ю.Г., Козлов Д.Н., Федяева М.В. Картографирование мощности органогенного и гумусового горизонтов лесных почв и болот южнотаежного ландшафта (юго-запад Валдайской возвышенности) на основе трехмерной модели рельефа и дистанционной информации (Landsat 7) // Исследование Земли из космоса. 2006. № 4. С. 70-79.
  • Романова Т.А. Водный режим в генетической характеристике почв гумидной зоны // Почвоведение. 1994. № 4. С. 32-39.
  • Рублюк М.В. Роль холмисто-моренного рельефа в формировании свойств дерново-подзолистых почв и урожайности картофеля в условиях Центрального района Нечерноземной зоны РФ: Дис. … канд. с-х. наук: 06.01.04. Тверь, 2003. 177 с.
  • Рубцова Л.П. О генезисе почв Владимирского ополья // Почвоведение. 1974. № 6. С. 17-27.
  • Савастру Н.Г. Агроэкологическая оценка почвенного покрова Владимирского ополья для проектирования адаптивно-ландшафтных систем земледелия: Дис. … канд. биол. наук: 03.00.27. М., 1999. 169 с.
  • Савин И.Ю., Жоголев А.В., Прудникова Е.Ю. Современные тренды и проблемы почвенной картографии // Почвоведение. 2019. № 5. С. 517-528.
  • Симакова М.С. Элементарные почвенные структуры Владимирского ополья // Почвы СССР. Принципы и генетико-географические аспекты исследований. М.: Почв. ин-т им. В.В. Докучаева, 1987. С. 50-56.
  • Сорокина Н.П. Микронеоднородность почвенного покрова полей и ее сельскохозяйственное значение // Почвы Московской области и их использование. Т. 1. М.: Почв. ин-т им. В.В. Докучаева, 2002. С. 277-311.
  • Сысуев В.В. Морфометрический анализ геофизической дифференциации ландшафтов // Известия Российской академии наук. Серия географическая. 2003. № 4. С. 36-50.
  • Тюрюканов А.Н., Быстрицкая Т.Л. Ополья Центральной России и их почвы. М.: Наука, 1971. 240 с.
  • Указания по диагностике подзолистого и болотно-подзолистого типов почв по степени оглеенности. М.: Картфилиал Росземпроекта, 1982. 10 с.
  • Физико-географическое районирование Нечерноземного центра / Н.А. Гвоздецкий, В.К. Жучкова. М.: Изд-во МГУ, 1963. 451 с.
  • Флоринский И.В. Гипотеза Докучаева как основа цифрового прогнозного почвенного картографирования (к 125-летию публикации) // Почвоведение. 2012. № 4. С. 500-506.
  • Шеин Е.В., Кирюшин В.И., Корчагин А.А., Мазиров М.А., Дембовецкий А.В., Ильин Л.И. Оценка агрономической однородности и совместимости почвенного покрова Владимирского ополья // Почвоведение. 2017. № 10. С. 1208-1215.
  • Шилов П.М., Козлов Д.Н. Почвенно-агроэкологическая оценка пахотнопригодности земель Валдайской возвышенности по материалам Генерального межевания // Бюллетень Почвенного института имени В.В. Докучаева. 2019. Вып. 98. С. 5-36.
  • DOI: 10.19047/0136-1694-2019-98-5-36
  • Ågren A.M., Lidberg W., Strömgren M., Ogilvie J., Arp P.A. Evaluating digital terrain indices for soil wetness mapping - a Swedish case study // Hydrology and Earth System Sciences. 2014. Vol. 18. No. 9. P. 3623-3634.
  • Bell J.C., Cunningham R.L., Havens M.W. Soil drainage class probability mapping using a soil-landscape model. Soil Science Society of America Journal. 1994. Vol. 58. No. 2. P. 464-470.
  • Bock M., Köthe R. Predicting the depth of hydrologic soil characteristics. Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie. 2008. Vol. 19. P. 13-22.
  • Carroll S., Goonetilleke A., Khalil W.A.S., Frost R. Assessment via discriminant analysis of soil suitability for effluent renovation using undistributed soil columns. Geoderma. 2006. Vol. 131. No. 1-2. P. 201-217.
  • Conrad O., Bechtel B., Bock M., Dietrich H., Fischer E., Gerlitz L., Wehberg J., Wichmann V., Böhner J. System for automated geoscientific analyses (SAGA) v.2.1.4. // Geoscientific Model Development Discussions. 2015. Vol. 8. No. 2. P. 2271-2312.
  • Debella-Gilo M., Etzelmüller B. Spatial prediction of soil classes using digital terrain analysis and multinomial logistic regression modeling integrated in GIS: Examples from Vestfold County, Norway // Catena. 2009. Vol. 77. No. 1. P. 8-18.
  • Florinsky I. Digital terrain analysis in soil science and geology. Puschino: Academic Press, 2016. 486 p.
  • Hengl T., Reuter H.I. Geomorphometry: concepts, software, applications. Amsterdam: Elsevier. 2008. 772 pp.
  • Jenny H. Factors of Soil Formation: A System of Quantitative Pedology. New York: Dover Publications, 1941. 281 p.
  • Gillin C.P., Bailey S.W., McGuire K.J., Gannon J.P. Mapping of hydropedologic spatial patterns in a steep headwater catchment // Soil Science Society of America Journal. 2015. Vol. 79. No. 2. P. 440-453.
  • Grabs T., Seibert J., Bishop K., Laudon H. Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model // Journal of Hydrology. 2009. Vol. 373. No. 1-2. P. 15-23.
  • Lidberg W., Nilsson M., Ågren A. Using machine learning to generate high-resolution wet area maps for planning forest management: A study in a boreal forest landscape // Ambio. 2020. Vol. 49. No. 2. P. 475-486.
  • Malone B.P., McBratney A.B., Minasny B. Description and spatial inference of soil drainage using matrix soil colours in the Lower Hunter Valley, New South Wales, Australia // PeerJ. 2018. Vol. 6. P. e4659.
  • McBratney A.B., Santos M.M., Minasny B. On digital soil mapping. Geoderma. 2003. Vol. 117. No. 1-2. P. 3-52.
  • Minasny B., McBratney A.B. Digital soil mapping: A brief history and some lessons // Geoderma. 2016. Vol. 264. P. 301-311.
  • Møller A.B., Iversen B.V., Beucher A., Greve M.H. Prediction of soil drainage classes in Denmark by means of decision tree classification // Geoderma. 2019. Vol. 352. P. 314-329.
  • Odeh I.O.A., McBratney A.B., Chittleborough D.J. Spatial prediction of soil properties from landform attributes derived from a digital elevation model // Geoderma. 1994. Vol. 63. No. 3-4. P. 197-214.
  • Shary P.A., Sharaya L.S., Mitusov A.V. Fundamental quantitative methods of land surface analysis // Geoderma. 2002. Vol. 107. No. 1-2. P. 1-32.
  • Thompson J.A., Pena-Yewtukhiw E.M., Grove J.H. Soil-landscape modeling across a physiographic region: Topographic patterns and model transportability // Geoderma. 2006. Vol. 133. No. 1-2. P. 57-70.
  • Troeh F.R. Landform parameters correlated to soil drainage // Soil Science Society of America Journal. 1964. Vol. 28. No. 6. P. 808-812.
  • Webster R., Burrough P. A Multiple discriminant analysis in soil survey // European Journal of Soil Science. 1974. Vol. 25, No. 1. P. 120-134.
  • Weiss A. Topographic position and landforms analysis // Poster presentation, ESRI user Conference. San Diego, CA, 2001. Vol. 200.
Еще
Статья научная