Топологический заряд суперпозиции двух пучков Бесселя–Гаусса

Автор: В.В. Котляр, А.А. Ковалёв

Журнал: Компьютерная оптика @computer-optics

Рубрика: Дифракционная оптика, оптические технологии

Статья в выпуске: 1 т.45, 2021 года.

Бесплатный доступ

В работе теоретически показано, что у суперпозиции двух пучков Бесселя–Гаусса с разными топологическими зарядами и разными масштабными множителями (радиальными проекциями волновых векторов) топологический заряд равен топологическому заряду того пучка Бесселя–Гаусса, у которого больше масштабный множитель. Если у пучков Бесселя–Гаусса масштабные множители равны, то топологический заряд суперпозиции равен топологическому заряду того пучка Бесселя–Гаусса, у которого больше модуль весового коэффициента (больше мощность). Если и мощности пучков одинаковы, то топологический заряд суперпозиции равен среднему арифметическому от топологических зарядов каждого пучка Бесселя–Гаусса в суперпозиции. При условии, что сумма топологических зарядов обоих пучков нечётная, топологический заряд суперпозиции будет полуцелым числом. Но на практике из-за конечного радиуса окружности, на котором рассчитывается топологический заряд, полуцелого топологического заряда для вырожденного случая не получается. Вместо полуцелого топологического заряда, получается целый топологический заряд, меньший из двух. Моделирование показывает, что при небольшой разнице в весовых коэффициентах топологический заряд суперпозиции не сохраняется: в ближней зоне и зоне Френеля топологический заряд равен большему из двух, а в дальней зоне – меньшему. Причем переход топологического заряда от большего к меньшему происходит не скачком, а непрерывно на некотором расстоянии. В переходной зоне топологический заряд дробный.

Еще

Топологический заряд, пучок Бесселя–Гаусса, дифракция Френеля, дальняя зона.

Короткий адрес: https://sciup.org/140253863

IDR: 140253863   |   DOI: 10.18287/2412-6179-CO-816

Статья