Топологии микрофлюидных устройств для изучения миграции клеток в градиентах химических веществ (обзор)

Автор: Кухтевич Игорь Владимирович, Белоусов К.И., Букатин А.С., Евстрапов А.А.

Журнал: Научное приборостроение @nauchnoe-priborostroenie

Рубрика: Приборостроение для биофизики и биохимиии

Статья в выпуске: 1 т.25, 2015 года.

Бесплатный доступ

Направленная клеточная миграция играет важную роль в физиологических процессах, например таких как защита организма от инфекций и вирусов, заживление ран, метастазирования рака и др. Клеточная миграция зависит в том числе и от воздействия на клетки градиентов концентраций химических веществ. Не так давно микрофлюидные устройства начали применяться для изучения миграции клеток. Подобные устройства позволяют прецизионно конфигурировать и управлять градиентами химических веществ, открывая новые возможности при изучении сложных механизмов взаимодействия клеток как внутри популяции, так и с окружающей средой. Обзор посвящен достижениям, связанным с разработкой микрофлюидных устройств для изучения влияния градиентов химических веществ на клеточную миграцию, классификации данных устройств, а также сравнению их с "традиционными" подходами, применяемыми в клеточной биологии

Еще

Микрофлюидное устройство, клеточная миграция, градиент химического вещества

Короткий адрес: https://sciup.org/14264963

IDR: 14264963

Список литературы Топологии микрофлюидных устройств для изучения миграции клеток в градиентах химических веществ (обзор)

  • Vicente-Manzanares M., Webb D.J., Horwitz A.R. Cell migration at a glance//Journal of Cell Science. 2005. Vol. 118. P. 4917-4919.
  • Berzat A., Hall A. Cellular responses to extracellular guidance cues//EMBO Journal. 2010. Vol. 29. P. 2734-2745.
  • Jin T., Xu X., Hereld D. Chemotaxis, chemokine receptors and human disease//Cytokine. 2008. Vol. 44. P. 1-8.
  • Zhao M. Electrical fields in wound healing-an overriding signal that directs cell migration//Seminars in Cell and Developmental Biology. 2009. Vol. 20. P. 674-682.
  • Campbell J., Butcher E. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing//Current Opinion Immunology. 2000. Vol. 12. P. 336-341.
  • Baggiolini M. Chemokines and leukocyte traffic//Nature. 1998. Vol. 392. P. 565-568.
  • Fletcher D.A., Theriot J.A. An introduction to cell motility for the physical scientist//Physical Biology. 2004. Vol. 1. P. 1-10.
  • Darnton N.C., Turner L., Rojevsky S., Berg H.C. On torque and tumbling in swimming Escherichia coli//Journal of Bacteriology. 2007. Vol. 189. P. 1756-1764.
  • Ridley A.J., Schwartz M.A., Burridge K. et al. Cell migration: integrating signals from front to back//Science. 2003. Vol. 302. P. 1704-1709.
  • Luster A., Alon R., Von A. U.H. Immune cell migration in inflammation: present and future therapeutic targets//Nature Immunology. 2005. Vol. 6. P. 1182-1190.
  • Yonekawa K., Harlan J.M. Targeting leukocyte integrins in human diseases//Journal of Leukocyte Biology. 2005. Vol. 77. P. 129-140.
  • Muller A., Homey B., Soto H., Ge N. et al. Involvement of chemokine receptors in breast cancer metastasis//Nature. 2001. Vol. 410. P. 50-56.
  • Raman D., Baugher P.J., Thu Y.M., Richmond A. Role of chemokines in tumor growth//Cancer Letters. 2007. Vol. 256. P. 137-165.
  • Beeh K.M., Kornmann O., Buhl R. et al. Neutrophil chemotactic activity of sputum from patients with COPD: role of interleukin 8 and leukotriene B4//CHEST Journal. 2003. Vol. 123. P. 1240-1247.
  • McCaig C., Colin D., Rajnicek A.M., Song B., Zhao M. Controlling cell behavior electrically: current views and future potential//Physiological Reviews. 2005. Vol. 85. P. 943-978.
  • Boyden S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes//Journal of Experimental Medicine. 1962. Vol. 115. P. 453-466.
  • Zigmond S. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors//Journal of Cell Biology. 1977. Vol. 75. P. 606-616.
  • Lohof A., Quillan M., Dan Y., Poo M. Asymmetric modulation of cytosolic cAMP activity induces growth cone turning//Journal of Neuroscience. 1992. Vol. 12. P. 1253-1261.
  • Zicha D., Dunn G, Jones G. Analyzing chemotaxis using the Dunn directviewing chamber//Methods in Molecular Biology. 1997. Vol. 75. P. 49-457.
  • Nelson R.D., Quie P.G., Simmons R.L. Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes//Journal of Immunology. 1975. Vol. 115. P. 1650-1656.
  • Li J., Lin F. Microfluidic devices for studying chemotaxis and electrotaxis//Trends in Cell Biology. 2011. Vol. 21, no. 8. P. 489-497.
  • Chung B.G., Choo J. Microfluidic gradient platforms for controlling cellular behavior//Electrophoresis. 2010. Vol. 31. P. 3014-3027.
  • Kim S., Kim H.J., Jeon N.L. Biological applications of microfluidic gradient devices//Integrative Biology. 2010. Vol. 2. P. 584-603.
  • Saadi W., Wang S.-J., Lin F., Jeon N.L. Chemotaxis of metastatic breast cancer cells in parallel gradient microfluidic chambers//NSTI-Nanotech. 2005. Vol. 1. P. 15-18.
  • Haessler U., Kalinin Y., Swartz M.A., Wu M. An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies//Biomedical Microdevices. 2009. Vol. 11. P. 827-835.
  • Fernandes J.T.S., Tenreiro S., Gameiro A. et al. Modulation of alpha-synuclein toxicity in yeast using a novel microfluidic-based gradient generator//Lab on a Chip. 2014. Vol. 14. P. 3949-3957.
  • Lin F. A microfluidics-based method for analyzing leukocyte migration to chemoattractant gradients//Methods in Enzymology/Tracy M.H. and Damon J.H. eds. Chapter 15. Academic Press, 2009. P. 333-347.
  • Lin F., Butcher E. T cell chemotaxis in a simple microfluidic device//Lab on a Chip. 2006. Vol. 6. P. 1462-1469.
  • Lin F., Saadi W., Rhee S.W., Wang S.J., Mittal S., Jeon N.L. Generation of dynamic temporal and spatial concentration gradients using microfluidic devices//Lab on a Chip. 2004. Vol. 4. P. 164-167.
  • Irimia D., Liu Su-Y., Tharp W.G. et al. Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients//Lab on a Chip. 2006. Vol. 6. P. 191-198.
  • Lin F., Nguyen C.M., Wang S.J. et al. Neutrophil migration in opposing chemoattractant gradients using microfluidic chemotaxis devices//Annals of Biomedical Engineering. 2005. Vol. 33. P. 475-482.
  • Englert D.L., Manson M.D., Jayaraman A. Investigation of bacterial chemotaxis in flowbased microfluidic devices//Nature Protocols. 2010. Vol. 5. P. 864-872
  • Saadi W., Wang S., Lin F., Jeon N.L. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis//Biomedical Microdevices. 2006. Vol. 8. P. 109-118.
  • Ricart B.G., John B., Lee D., Hunter C.A., Hammer D.A. Dendritic cells distinguish individual chemokine signals through CCR7 and CXCR4//Journal of Immunology. 2011. Vol. 186. P. 53-61.
  • Lin F., Nguyen C.M., Wang S.J. et al. Effective neutrophil chemotaxis is strongly influenced by mean IL-8 concentration//Biochemical and Biophysical Research Communications. 2004. Vol. 319. P. 576-581.
  • Diao J.P., Young L., Kim S. et al. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis//Lab on a Chip. 2006. Vol. 6. P. 381-388.
  • Chung S., Sudo R., Mack P.J. et al. Cell migration into scaffolds under co-culture conditions in a microfluidic platform//Lab on a Chip. 2009. Vol. 9. P. 269-275.
  • Chen Z., Chen W., Yuan B. et al. In vitro model on glass surfaces for complex interactions between different types of cells//Langmuir. 2010. Vol. 26. P. 17 790-17 794.
  • Abhyankar V.V., Lokuta M.A., Huttenlocherbc A., Beebe D.J. Characterization of a membrane-based gradient generator for use in cell-signaling studies//Lab on a Chip. 2006. Vol. 6. P. 389-393.
  • Chung B., Lin F., Jeon N.L. A microfluidic multi-injector for gradient generation//Lab on a Chip. 2006. Vol. 6. P. 764-768.
  • Huang C.P., Lu J., Seon H. et al. Engineering microscale cellular niches for three-dimensional multicellular co-cultures//Lab on a Chip. 2009. Vol. 9. P. 1740-1748.
  • Ambravaneswaran V., Wong I.Y., Aranyosi A.J. et al. Directional decisions during neutrophil chemotaxis inside bifurcating channels//Integrative Biology. 2010. Vol. 2. P. 639-647.
  • Rhoads D.S., Nadkarni S.M., Song L. et al. Cell migration: developmental methods and protocols/Ed. J.-L. Guan. V. 294. Totowa (NJ): Humana Press Inc., 2004.
  • Wells C.M., Ridley A.J. Analysis of cell migration using the Dunn chemotaxis chamber and time-lapse microscopy//Methods in Molecular Biology. 2005. Vol. 294. P. 31-41.
  • Mandarino G.L., Suarez A.F., Hirata A.A., Ward P.A. Chemotaxis under agarose utilizing human serum depleted of C-5 derived peptides//Journal of Immunological Methods. 1981. Vol. 45. P. 283-299.
  • Wu H.-J., Liu Y.-J., Li H.-Q. et al. Analysis of microglial migration by a micropipette assay//Nature Protocols. 2014. Vol. 9. P. 491-500.
  • Mao H.B., Cremer P.S., Manson M.D. A sensitive, versatile microfluidic assay for bacterial chemotaxis//Proceedings of the National Academy of Sciences of the United States of America. 2003. Vol. 100. P. 5449-5454.
  • Lanning L.M., Ford R.M., Long T. Bacterial chemotaxis transverse to axial flow in a microfluidic channel//Biotechnology and Bioengineering. 2008. Vol. 100. P. 653-663.
  • Long T., Ford R.M. Enhanced transverse migration of bacteria by chemotaxis in a porous T-sensor//Environmental Science & Technology. 2009. Vol. 43. P. 1546-1552.
  • Moore T.I., Chou C.S., Nie Q. et al. Robust spatial sensing of mating pheromone gradients by yeast cells//PLoS One. 2008. Vol. 3. P. e3865.
  • Chung B. G., Manbachi A., Saadi W. et al. A gradient-generating microfluidic device for cell biology//Journal of Visualized Experiments. 2007. V. 7. P. 271
  • Park J.Y., Kim S.K., Woo D.H. et al. Differentiation of neural progenitor cells in a microfluidic chip-generated cytokine gradient//Stem Cells. 2009. V. 27. P. 2646-2654.
  • Chang W., Cheng Y.-J., Tu M. et al. A polydimethylsiloxane-polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies//Lab on a Chip. 2014. Vol. 14. P. 3762-3772.
  • Hung P.J., Lee P.J., Sabounchi P. et al. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays//Biotechnology and Bioengineering. 2005. Vol. 89. P. 1-8.
  • Wang S.J., Saadi W., Lin F. et al. Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis//Experimental Cell Research. 2004. V. 300. P. 180-189.
  • Chung B.G., Flanagan L.A., Rhee S.W. et al. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device//Lab on a Chip. 2005. Vol. 5. P. 401-406.
  • Dertinger S.K.W., Jiang X.Y., Li Z.Y. et al. Gradients of substrate-bound laminin orient axonal specification of neurons//Proceedings of the National Academy of Sciences of the United States of America. 2002. Vol. 99. P. 12 542-12 547.
  • Paliwal S., Iglesias P.A., Campbell K. et al. MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast//Nature. 2007. Vol. 446. P. 46-51.
  • Diao J.P., Young L., Kim S. et al. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis//Lab on a Chip. 2006. Vol. 6. P. 381-388.
  • Abhyankar V.V., Beebe D.J. Spatiotemporal micropatterning of cells on arbitrary substrates//Analytical Chemistry. 2007. Vol. 79. P. 4066-4073.
  • Keenan T.M., Folch A. Biomolecular gradients in cell culture systems//Lab on a Chip. 2008. Vol. 8. P. 34-57.
  • Kamholz A.E., Weigl B.H., Finlayson B.A., Yager P. Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor//Analytical Chemistry. 1999. Vol. 71, no. 23. P. 5340-5347.
  • Englert D.L., Manson M.D., Jayaraman A.//Applied and Environmental Microbiology. 2009. Vol. 75. P. 4557-4564.
  • Cooksey G.A., Sip С.G., Folch A. A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates//Lab on a Chip. 2009. Vol. 9, no. 3. P. 417-426.
  • Cheng S.Y., Heilman S., Wasserman M. et al. A hydrogel-based microfluidic device for the studies of directed cell migration//Lab on a Chip. 2007. Vol. 7. P. 763-769.
  • Ahmed T., Shimizu T.S., Stocker R. Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients//Nano Letters. 2010. Vol. 10. P. 3379-3385.
  • Mendelson A., Cheung Y.K., Paluch K. et al. Competitive stem cell recruitment by multiple cytotactic cues//Lab on a Chip. 2013. Vol. 13. P. 1156-1164.
  • Law A.M.J., Aitken M.D. Continuous-flow capillary assay for measuring bacterial chemotaxis//Applied and Environmental Microbiology. 2005. Vol. 71. P. 3137-3143.
  • Atencia J., Morrow J., Locascio L.E. The microfluidic palette: A diffusive gradient generator with spatio-temporal control//Lab on a Chip. 2009. Vol. 9. P. 2707-2714.
  • Kim T., Pinelis M., Maharbiz M.M. Generating steep, shear-free gradients of small molecules for cell culture//Biomedical Microdevices. 2009. Vol. 11. P. 65-73.
  • Scherber C., Aranyosi A.J., Kulemann B. et al. Epithelial cell guidance by self-generated EGF gradients//Integrative Biology. 2012. Vol. 4. P. 259-269.
  • Choi E., Chang H.-K., Lim C.Y. et al. Concentration gradient generation of multiple chemicals using spatially controlled self-assembly of particles in microchannels//Lab on a Chip. 2012. Vol. 12. P. 3968-3975.
  • Cho H., Hamza B., Wonga E.A., Irimia D. On-demand, competing gradient arrays for neutrophil chemotaxis//Lab on a Chip. 2014. Vol. 14. P. 972-978.
  • Jin B.-J., Ko E.-A., Namkung W., Verkman A.S. Microfluidics platform for single-shot dose -response analysis of chloride channel-modulating compounds//Lab on a Chip. 2013. Vol. 13. P. 3862-3867.
  • Baker B.M., Trappmann B., Stapleton S.C. et al. Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients//Lab on a Chip. 2013. Vol. 13. P. 3246-3252.
  • Xu B.-Y., Hu S.-W., Qian G.-S. et al. A novel microfluidic platform with stable concentration gradient for on chip cell culture and screening assays//Lab on a Chip. 2013. Vol. 13. P. 3714-3720.
  • Sip C.G., Bhattacharjeea N., Folcha A. Microfluidic transwell inserts for generation of tissue culture-friendly gradients in well plates//Lab on a Chip. 2014. Vol. 14. P. 302-314.
Еще
Статья обзорная