Towards monitored tomographic reconstruction: algorithm-dependence and convergence
Автор: Bulatov K.B., Ingacheva A.S., Gilmanov M.I., Kutukova K., Soldatova Zh.V., Buzmakov A.V., Chukalina M.V., Zschech E., Arlazarov V.V.
Журнал: Компьютерная оптика @computer-optics
Рубрика: Численные методы и анализ данных
Статья в выпуске: 4 т.47, 2023 года.
Бесплатный доступ
The monitored tomographic reconstruction (MTR) with optimized photon flux technique is a pioneering method for X-ray computed tomography (XCT) that reduces the time for data acquisition and the radiation dose. The capturing of the projections in the MTR technique is guided by a scanning protocol built on similar experiments to reach the predetermined quality of the reconstruction. This method allows achieving a similar average reconstruction quality as in ordinary tomography while using lower mean numbers of projections. In this paper, we, for the first time, systematically study the MTR technique under several conditions: reconstruction algorithm (FBP, SIRT, SIRT-TV, and others), type of tomography setup (micro-XCT and nano-XCT), and objects with different morphology. It was shown that a mean dose reduction for reconstruction with a given quality only slightlyvaries with choice of reconstruction algorithm, and reach up to 12.5 % in case of micro-XCT and 8.5 % for nano-XCT. The obtained results allow to conclude that the monitored tomographic reconstruction approach can be universally combined with an algorithm of choice to perform a controlled trade-off between radiation dose and image quality. Validation of the protocol on independent common ground truth demonstrated a good convergence of all reconstruction algorithms within the MTR protocol.
Anytime algorithms, monitored tomographic reconstruction, micro x-ray computed tomography, nano x-ray computed tomography, dose reduction, time reducing, stopping rule
Короткий адрес: https://sciup.org/140301839
IDR: 140301839 | DOI: 10.18287/2412-6179-CO-1238
Список литературы Towards monitored tomographic reconstruction: algorithm-dependence and convergence
- Pashina TA, Gaidel AV, Zelter PM, Kapishnikov AV, Nikonorov AV. Automatic highlighting of the region of interest in computed tomography images of the lungs. Computer Optics 2020; 44(1): 74-81. DOI: 10.18287/2412-6179-CO-659.
- Baldacci F, Laurent F, Berger P, Dournes G. 3D human airway segmentation from high resolution MR imaging. Proc SPIE 2019; 11041: 110410Y.
- Kawashima H, Kogame N, Ono M, et al. Diagnostic concordance and discordance between angiography-based quantitative flow ratio and fractional flow reserve derived from computed tomography in complex coronary artery disease. J Cardiovasc Comput Tomogr 2022; 16(4): 336342.
- Straatman L, Knowles N, Suh N, Walton D, Lalone E. The utility of quantitative computed tomography to detect differences in subchondral bone mineral density between healthy people and people with pain following wrist trauma. J Biomech Eng 2022; 144(8): 084501.
- Duggar WN, Morris B, He R, Yang C. Total workflow uncertainty of frameless radiosurgery with the Gamma Knife Icon cone-beam computed tomography. J Appl Clin Medical Phys 2022; 23(5): e13564.
- Villarraga-Gomez H, Smith ST. Effect of geometric magnification on dimensional measurements with a metrology-grade X-ray computed tomography system. Precis Eng 2022; 73: 488-503.
- Sun W, Symes DR, Brenner CM, Bohnel M, Brown S, Mavrogordato MN, Sinclair I, Salamon M. Review of high energy x-ray computed tomography for non-destructive dimensional metrology of large metallic advanced manufactured components. Rep Prog Phys 2022; 85(1): 016102.
- Smith R, Connelly JM. ct technologies. In Book: Kagan A, Oxley JC, eds. Counterterrorist detection techniques of explosives. 2nd ed. Ch 2. Oxford: Elsevier; 2022: 29-45. DOI: 10.1016/B978-0-444-64104-5.00009-6.
- Kumar R, Lhuissier P, Villanova J, et al. Elementary growth mechanisms of creep cavities in AZ31 alloy revealed by in situ x-ray nano-tomography. Acta Materialia 2022; 228: 117760.
- Holland P, Quintana EM, Khezri R, Schoborg TA, Rusten TE. Computed tomography with segmentation and quantification of individual organs in a D. melanogaster tumor model. Sci Rep 2022; 12(1): 2056.
- Chukalina M, Buzmakov A, Ingacheva A, Shabelnikova YA, Asadchikov V, Bukreeva I, Nikolaev D. Analysis of the tomographic reconstruction from polychromatic projections for objects with highly absorbing inclusions. Information technologies and computing systems. FRC CSC RAS 2020; 3: 49-61. doi: 10.14357/20718632200305.
- Topal E, Liao Z, Loffler M, Gluch J, Zhang J, Feng X, Zschech E. Multi-scale X-ray tomography and machine learning algorithms to study MoNi4 electrocatalysts anchored on MoO2 cuboids aligned on Ni foam. BMC Materials 2020; 2(1): 5.
- Brooks RA, Di Chiro G. Theory of image reconstruction in computed tomography. Radiology 175; 117(3): 561-572.
- Villarraga-Gömez H, Smith ST. Effect of the number of projections on dimensional measurements with x-ray computed tomography. Precis Eng 2020; 66: 445-456.
- Joseph PM, Schulz RA. View sampling requirements in fan beam computed tomography. Med Phys 1980; 7(6): 692-702.
- Konovalov A, Kiselev A, Vlasov V. Spatial resolution of few-view computed tomography using algebraic reconstruction techniques. Pattern Recogn Image Anal 2006; 16(2): 249-255.
- Liu Y, Liang Z, Ma J, Lu H, Wang K, Zhang H, Moore W. Total variation-stokes strategy for sparse-view x-ray ct image reconstruction. IEEE Trans Med Imaging 2013; 33(3): 749-763.
- Yim D, Lee S, Nam K, Lee D, Kim DK, Kim JS. Deep learning-based image reconstruction for few-view computed tomography. Nucl Instrum Methods Phys Res A 2021; 1011: 165594.
- Bulatov K, Chukalina M, Buzmakov A, Nikolaev D, Arlazarov VV. Monitored reconstruction: Computed tomography as an anytime algorithm. IEEE Access 2020; 8: 110759-110774. DOI: 10.1109/ACCESS.2020.3002019.
- Ferguson TS. Mathematical statistics: A decision theoretic approach. Vol 1. New York: Academic Press; 2014.
- Zilberstein S. Using anytime algorithms in intelligent systems. AI Magazine 1996; 17(3): 73-73.
- Bracewell RN, Riddle A. Inversion of fan-beam scans in radio astronomy. Astrophys J 1967; 150: 427.
- Dolmatova A, Chukalina M, Nikolaev D. Accelerated fbp for computed tomography image reconstruction. 2020 IEEE Int Conf on Image Processing (ICIP) 2020: 30303034.
- Shepp LA, Logan BF. The fourier reconstruction of a head section. IEEE Trans Nucl Sci 1974; 21(3): 21-43.
- Sidky EY, Pan X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol 2008; 53(17): 4777.
- Prun VE, Buzmakov AV, Nikolaev DP, Chukalina MV, Asadchikov VE. A computationally efficient version of the algebraic method for computer tomography. Autom Remote Control 2013; 74(10): 1670-1678.
- Bulatov K, Chukalina M, Kutukova K, Kohan V, Ingacheva A, Buzmakov A, Arlazarov VV, Zschech E. Monitored tomographic reconstruction-an advanced tool to study the 3D morphology of nanomaterials. Nanomaterials 2021; 11(10): 2524.
- Buzmakov A, Asadchikov V, Zolotov D, et al. Laboratory microtomographs: design and data processing algorithms. Crystallogr Rep 2018; 63(6): 1057-1061.
- Zhang J, Wang T, Liu P, Liao Z, Liu S, Zhuang X, Chen M, Zschech E, Feng X. Efficient hydrogen production on moni4 electrocatalysts with fast water dissociation kinetics. Nat Commun 2017; 8(1): 15437.
- Smart Tomo engine - future X-ray tomography. 2022. Source: ¿https://smartengines.com/ocr-engines/tomo-engine/n.
- Parisot C. The dicom standard. Int J Cardiovasc Imaging 1995; 11(3): 171-177.
- Könnecke M, Akeroyd FA, Bernstein HJ, et al. The nexus data format. J Appl Crystallogr 2015; 48(1): 301-305.
- Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am A 1984; 1(6): 612-619.
- Bracewell RN. Numerical transforms. Science 1990; 248(4956): 697-704.