Treatment of 24-EBL to Brassica juncea plants under cu-metal stress lowers oxidative burst by activity of antioxidative enzymes
Автор: Poonam , Kaur Ravdeep, Bali Shagun, Singh Ravinder, Pati P.K., Bhardwaj Renu
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 2 т.10, 2014 года.
Бесплатный доступ
Heavy metal contamination is becoming a major threat to plants due to increasing industrialization. Copper is one of essential element required in trace amounts for the regular development of plants. Its excessive concentration alters the metabolism of plants. Brassinosteroids are polyhydoxylated steroidal plant hormone found to alleviate the various abiotic stresses including heavy metal stress. In the present study, effect of 24-EBL was studied in Brassica juncea plants under Cu stress. The B. juncea was grown in Cu (0, 0.25mM, 0.50mM and 0.75mM) treated soil. The seeds was soaked in the solution of 24-EBL (0, 10 -7, 10 -9 and 10 -11 M) for 8 hours. The plants were harvested on 45 th DAS. The harvested plants were used for the protein quantification and analysis of antioxidative enzymes (CAT, SOD, POD, GR, APOX, DHAR and MDHAR). The results revealed that Cu treatment lowered the protein content, while at the same time, application of 24-EBL improved the protein content. The activity of various enzymes increased under the Cu stress. The application of 24-EBl had further enhanced the activity of enzymes indicating that it may relieve the oxidative stress caused by the copper metal.
Brassinosteroids, stress, antioxidative enzymes, protein
Короткий адрес: https://sciup.org/14323871
IDR: 14323871
Список литературы Treatment of 24-EBL to Brassica juncea plants under cu-metal stress lowers oxidative burst by activity of antioxidative enzymes
- Aebi, H. (1984). Catalase in Vitro. Methods Enzymol., 105, 121-126
- Ahammed, G.J., Choudhary, S.P., Chen, S., Xia, X., Shi, K., Zhou, Y., and Yu, J. (2013). Role of brassinosteroids in alleviation of phenanthrene-cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. J. Exp. Bot., 64, 199-213
- Alam, M.M., Hayat, S., Ali, B., and Ahmad, A. (2007). Effect of 28-homobrassinolide on nickel induced changes in Brassica juncea. Photosynthetica, 45, 139-142
- Ali, B., Hayat, S., Fariduddin, Q., Ahmad, A. (2008). 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere, 72, 1387-1392
- Alscher, R.G., Erturk, N., and Heath, L.S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Biol., 53, 1331-1341
- Ann, C., Karen, S., Jos, R., Kelly, O., Els, K., Tony, R., Nele, H., Nathalie, V., Suzy, V.S., Frank, V.B., Yves, G., Jan, C., and Jaco, V. (2011). The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J. Plant. Physiol., 168, 309-316
- Aravind, P., Prasad, M.N.V., Malec, P., Waloszek, A., Strzałka, K., (2009). Zinc protects Ceratophyllum demersum L. (free-floating hydrophyte) against reactive oxygen species induced by cadmium. J. Trace Elem. Med. Biol., 23, 50-60
- Aust, S.D., Marehouse, L.A., and Thomas, C.E. (1985). Role of metals in oxygen radical Reactions. J. Free Radic. Biol. Med., 1, 3-25
- Bajguz, A. and Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem., 47, 1-8
- Bajguz, A., (2002). Brassinosteroids and lead as stimulators of phytochelatins synthesis in Chlorella vulgaris. J. Plant Physiol., 159, 321-324
- Baker, A.J.M. (1987). Metal tolerance. New Phytol., 106, 93-111
- Behnamnia, M., Kalantari, Kh.M., and Rezanejad, F. (2009). Exogenous application of brassinosteroid alleviates drought-induced oxidative stress in Lycopersicon esculentum L. General and Applied Plant Physiology, 35, 22-34
- Cao, S., Xu Q., Cao Y., QiAn K., An K., Zhu Y., Binzeng H., Zhao H., and Kuai B. (2005). Loss of function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiol. Plant., 123, 57-66
- Carlberg, I., and Mannervik, B. (1975). Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J. Biol. Chem. 250, 5475-5480
- Clouse, S.D, and Sasse, J.M. (1998). Brassinosteroids: essential regulators of plant growth and development. Annu. Rev. Plant Physiol. Mol. Biol., 49, 427-451
- Dalton, D.A., Russell, S.A., Hanus, F.J., Pascoe, G.A., and Evans, H.J. (1986). Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc. Natl. Acad. Sci. U.S.A., 83, 3811-3815
- El-Shintinawy, F., and El-Ansary, A. (2000). Differential effect of Cd2+ and Ni2+ on amino acid metabolism in soybean seedlings. Biol. Plantarum., 43, 79-84
- Fariduddin, Q. Ahmad, A. and Hayat, S. (2004). Response of Vigna radiata to foliar application of 28-homobrassinolide and kinetin. Biol. Plantarum, 48: 465-468
- Foyer, C.H., Lopez-Delgado, H., Dat, J.F., and Scott, I.M. (1997). Hydrogen peroxide-and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol. Plant, 100, 241-254
- Gangwar, S., Singh, V.P., Srivastava, P.K., and Maurya, J.N. (2011). Modification of chromium (VI) phytotoxicity by exogenous gibberellicacid application in Pisum sativum (L.) seedlings. Acta. Physiol. Plant., 33, 1385-1397
- Hossain, M.A., Nakano, Y., and Asada, K. (1984). Monodehydroascorbate reductase in spinach chloroplasts and its participation in the regeneration of ascorbate for scavenging Hydrogen Peroxide. Plant Cell. Physiol., 25, 385-395
- Kanoun-Boule´, M., Vicente, J.A.F., Nabais, C., Prasad, M.N.V., and Freitas, H. (2009). Ecophysiological tolerance of duckweeds exposed to copper. Aquat. Toxicol., 91,1-9
- Kono, Y. (1978). Generation of superoxide radical during autooxidation of hydroxylamine and an assay for superoxide dismutase. Arch. Biochem. Biophys., 186, 189-195
- Kumar, A., Prasad, M.N.V., and Sytar, O. (2012). Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere, 89, 1056-1165
- Lowry, O.H., Resebrough, N.J., Farr, A.L., and Randall, R.J. (1951). Protein determination with folin reagent. J. Biol. Chem., 193, 265-275
- Maleva, M.G., Nekrasova, G.F., Malec, P., Prasad, M.N.V., and Strzałka, K. (2009). Ecophysiological tolerance of Elodea canadensis to nickel exposure. Chemosphere, 77, 393-398
- Mandava, B.N. (1988). Plant growth promoting brassinosteroids. Annu. Rev. Plant Physiol. Plant Mol. Biol., 39, 23-52
- Mazorro, L.M., Nunez M., Echeraria E., Coll F., and Sanchez-Blanco M.J. (2002). Influence of brassinosteroids and antioxidant enzymes activity in tomato under different temperatures. Biol. Plantarum, 45, 593-596
- Mittler, R. (2002). Oxidative stress, antioxidants, and stress tolerance. Trends Plant Sci., 7, 405-410
- Munné-Bosch, S. (2005). The role of alpha-tocopherol in plant stress tolerance. J. Plant Physiol., 162, 743-748
- Nakano, Y., and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22, 867-880
- Noctor, G., and Foyer, C.H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 249-279
- Sánchez, M., Revilla, G. and Zarra, I. (1995). Changes in peroxidase activity associated with cell walls during pine hypocotyl growth. Ann. Bot., 75, 415-419
- Schu¨tzendu¨bel, A., and Polle, A. (2002). Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot., 53, 1351-1365
- Song-Hua, W., Zhi-Min, Y., Hong, Y., Bo Lu, Shao-Qong, L., and Ya-Ping, L. (2004). Copper induced stress and antioxidative responses in roots of Brassica juncea L. Bot. Bull. Acad. Sinica., 45, 203-212
- Xia, X.J., Zhang, Y., Wu, J.X., Wang, J.T., Zhou, Y.H., Shi, K., Yu, Y.L., and Yu, J.Q. (2009). Brassinosteroids promote metabolism of pesticides in cucumber. J. Agric. Food Chem., 57, 8406-8413