Tree-serial parametric dynamic programming with flexible prior model for image denoising

Автор: Thang Pham Cong, Kopylov Andrei Valerievich

Журнал: Компьютерная оптика @computer-optics

Рубрика: Обработка изображений, распознавание образов

Статья в выпуске: 5 т.42, 2018 года.

Бесплатный доступ

We consider here image denoising procedures, based on computationally effective tree-serial pa-rametric dynamic programming procedures, different representations of an image lattice by the set of acyclic graphs and non-convex regularization of a new type which allows to flexibly set a priori pref-erences. Experimental results in image denoising, as well as comparison with related methods, are provided. A new extended version of multi quadratic dynamic programming procedures for image denoising, proposed here, shows an improved accuracy for images of a different type.

Image denoising, dynamic programming, bayesian optimization, markov random fields (mrfs), gauss-seidel iteration method

Короткий адрес: https://sciup.org/140238485

IDR: 140238485   |   DOI: 10.18287/2412-6179-2018-42-5-838-845

Список литературы Tree-serial parametric dynamic programming with flexible prior model for image denoising

  • Wang, Z. Modern image quality assessment. Synthesis lectures on image, video, and multimedia processing/Z. Wang, A.C. Bovik. -Morgan & Claypool Publishers, 2006. -156 p. -ISBN: 978-1-59829-022-6.
  • Chambolle, A. Total variation in imaging/A. Chambolle, V. Caselles, M. Novaga. -In: Handbook of mathematical methods in imaging/ed. by O. Scherzer. -New York: Springer Science+Business Media LLC, 2011. -P. 1016-1057. - DOI: 10.1007/978-0-387-92920-0_23
  • Chaudhury, K. Fast O(1) bilateral filtering using trigonometric range kernels/K. Chaudhury, D. Sage, M. Unser//IEEE Transactions on Image Processing. -2011. -Vol. 20, Issue 12. -P. 3376-3382. - DOI: 10.1109/TIP.2011.2159234
  • Rudin, L.I. Nonlinear total variation based noise removal algorithms/L.I. Rudin, S. Osher, E. Fatemi//Physica D: Nonlinear Phenomena. -1992. -Vol. 60, Issues 1-4. -P. 259-268. - DOI: 10.1016/0167-2789(92)90242-F
  • Wang, Y. MTV: modified total variation model for image noise removal/Y. Wang, W. Chen, S. Zhou, T. Yu, Y. Zhang//Electronics Letters. -2011. -Vol. 47, Issue 10. -P. 592-594. - DOI: 10.1049/el.2010.3505
  • You, Y.-L. Fourth order partial differential equations for noise removal/Y.-L. You, M. Kaveh//IEEE Transactions on Image Processing. -2000. -Vol. 9, Issue 10. -P. 1723-1730. - DOI: 10.1109/83.869184
  • Wang, Y.Q. Image denoising using modified Perona-Malik model based on directional Laplacian/Y.Q. Wang, J.C. Guo, W.F. Chen, W. Zhang//Signal Processing. -2013. -Vol. 93, Issue 9. -P. 2548-2558. - DOI: 10.1016/j.sigpro.2013.02.020
  • Hammersley, J.M. Markov random fields on finite graphs and lattices/J.M. Hammersley, P.E. Clifford. -Berkeley preprint; 1971.
  • Besag, J.E. Spatial interaction and the statistical analysis of lattice systems/J.E. Besag//Journal of the Royal Statistical Society, Series B. -1974. -Vol. 36, Issue 2. -P. 192-236.
  • Nikolova, M. Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction/M. Nikolova, K. Michael, C.-P. Tam//IEEE Transactions on Image Processing. -2010. -Vol. 19, Issue 12. -P. 3073-3088. - DOI: 10.1109/TIP.2010.2052275
  • Pham, C.T. Parametric procedures for image denoising with flexible prior model/C.T. Pham, A. V.Kopylov//Proceedings of the Seventh Symposium on Information and Communication Technology (SoICT '16). -2016. -P. 294-301. - DOI: 10.1145/3011077.3011099
  • Mottl, V.V. Optimization techniques on pixel neighborhood graphs for image processing/V.V. Mottl. -In: Graph-based representations in pattern recognition/ed. by J.-M. Jolion, W.G. Kropatsch. -Vienna: Springer-Verlag; 1998: 135-145 DOI: 10.1007/978-3-7091-6487-7_14
  • Pham, C.T. Image processing procedures based on multi-quadratic dynamic programming/C.T. Pham//Informatica. -2017. -Vol. 41, Issue 2. -P. 255-256.
  • Pham, C.T. Multi-quadratic dynamic programming procedure of edge-preserving denoising for medical images/C.T. Pham, A.V. Kopylov//ISPRS -International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. -2015. -Vol. XL-5/W6. -P. 101-106. - DOI: 10.5194/isprsarchives-XL-5-W6-101-2015
  • Bertelè, U. On non-serial dynamic programming/UBertelè, F. Brioschi//Journal of Combinatorial Theory, Series A. -1973. -Vol. 14, Issue 2. -P. 137-148. - DOI: 10.1016/0097-3165(73)90016-2
  • Mottl, V. Elastic transformation of the image pixel grid for similarity based face identification/V. Mottl, A.V. Kopylov, A. Kostin, A. Yermakov, J. Kittler//Proceedings of 16th International Conference on Pattern Recognition. -2002. -Vol. 3. -P. 549-552. - DOI: 10.1109/ICPR.2002.1047998
  • Dvoenko, S.D. Clustering sets based on distances and proximities between its elements /S.D. Dvoenko//Sibirskii Zhurnal Industrial'noi Matematiki. -2009. -Vol. 12, Issue 1. -P. 61-73.
  • Pham, C.T. Edge-preserving denoising based on dynamic programming on the full set of adjacency graphs/C.T. Pham, A.V. Kopylov, S.D. Dvoenko//ISPRS -International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. -2017. -Vol. XLII-2/W4. -P. 55-60. -DOI: 10.5194/isprs-archives-XLII-2-W4-55-2017.
  • Zosso, D. A primal-dual projected gradient algorithm for efficient Beltrami regularization/D. Zosso, A. Bustin. -Technical report UCLA CAM Report 14-52 2014.
  • Kopylov, A.V. Parametric dynamic programming procedures for edge preserving in signal and image smoothing/A.V. Kopylov//Pattern Recognition and Image Analysis. -2005. -Vol. 15, Issue 1. -P. 227-230.
  • Kopylov, A. Tree-serial dynamic programming for image processing/A. Kopylov//Proceedings of 19th International Conference on Pattern Recognition. -2008. -P. 1-4. - DOI: 10.1109/ICPR.2008.4761407
  • Kopylov, A. A signal processing algorithm based on parametric dynamic programming/A. Kopylov, O. Krasotkina, A. Pryimak, V. Mottl. -In: Image and Signal Processing/ed. by A. Elmoataz, O. Lezoray, F. Nouboud, D. Mammass, J. Meunier. -Berlin, Heidelberg: Springer, 2010. -P. 280-286. - DOI: 10.1007/978-3-642-13681-8_33
  • Kalman, R.E. New results in linear filtering and prediction theory/R.E. Kalman, R.S. Bucy//Journal of Basic Engineering. -1961. -Vol. 83, Issue 1. -P. 95-108. - DOI: 10.1115/1.3658902
  • Kopylov, A.V. Rowwise aggregation of variables in the dynamic programming algorithm for image processing/A.V. Kopylov//Pattern Recognition and Image Analysis. -2008. -Vol. 18, Issue 2. -P. 309-313. - DOI: 10.1134/S105466180802017X
  • Dvoenko, S.D. Recognition of dependent objects based on acyclic Markov models/S.D. Dvoenko//Pattern Recognition and Image Analysis. -2012. -Vol. 22, Issue 1. -P. 28-38. - DOI: 10.1134/S1054661812010130
Еще
Статья научная