Trihedral rod pyramid: deformations and natural vibration frequencies

Автор: Kirsanov Mikhail Nikolaevich

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 6 (104), 2022 года.

Бесплатный доступ

The object of research is a new truss scheme of a statically determinate dome structure. The purpose of the study is to derive formulas for the dependences of the deflection under the action of a uniform load and the first frequency of natural vibrations on the number of panels, sizes, and masses concentrated in the truss nodes. Method. The forces in the truss rods are found from the equilibrium equations of the nodes. The system of equations also includes the reactions of vertical supports located along the contour of the structure. It is shown that the distribution of forces over the structure rods does not depend on the number of panels. The deflection values and stiffness of the truss structure are calculated using the Maxwell - Mohr formula. The lower analytical estimate of the first frequency is obtained by the Dunkerley method, the upper one by the Rayleigh energy method. As a form of truss deflection in the Rayleigh method, the deflection from the action of a uniformly distributed load is taken. Only vertical oscillations of the weights are assumed. Results. The dependence of the solution on the number of panels is obtained by generalizing a series of solutions for trusses with a successively increasing number of panels. The solution uses operators of the Maple computer mathematics system. Graphs of the dependence of the deflection on the number of panels for different truss heights are plotted. The horizontal asymptote of the solution of the deflection problem is found. The value for the first natural frequency is compared with the numerical solution obtained from the analysis of the entire spectrum of natural frequencies of the vertical oscillations of the mass system located in the truss nodes. The frequency equation is compiled and solved using the eigenvalue search operators in the Maple system. It is shown that the lower analytical estimate based on the calculation of partial frequencies differs from the numerical solution by no more than 37%, while the upper estimate has an error of 7%. In this case, the formula for the lower Dunkerley frequency estimate turns out to be more compact. The natural frequency spectrum of the truss is analyzed. Isolines were found in the set of frequencies for a series of regular trusses.

Еще

Spatial truss, dunkerley method, maple, induction, frequency spectrum isoline, rayleigh formula

Короткий адрес: https://sciup.org/143179859

IDR: 143179859   |   DOI: 10.4123/CUBS.104.1

Список литературы Trihedral rod pyramid: deformations and natural vibration frequencies

  • Hutchinson, R.G., Fleck, N.A. Microarchitectured cellular solids - The hunt for statically determinate periodic trusses. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 2005. 85(9). Pp. 607–617. DOI:10.1002/zamm.200410208.
  • Hutchinson, R.G., Fleck, N.A. The structural performance of the periodic truss. Journal of the Mechanics and Physics of Solids. 2006. 54(4). Pp. 756–782. DOI:10.1016/j.jmps.2005.10.008.
  • Zotos, K. Performance comparison of Maple and Mathematica. Applied Mathematics and Computation. 2007. 188(2). Pp. 1426–1429. DOI:10.1016/j.amc.2006.11.008.
  • Feng, J., Sun, Y., Xu, Y., Wang, F., Zhang, Q., Cai, J. Robustness analysis and important element evaluation method of truss structures. Buildings. 2021. 11(10). DOI:10.3390/BUILDINGS11100436.
  • Spyridis, P., Strauss, A. Robustness Assessment of Redundant Structural Systems Based on Design Provisions and Probabilistic Damage Analyses. Buildings 2020, Vol. 10, Page 213. 2020. 10(12). Pp. 213. DOI:10.3390/BUILDINGS10120213. URL: https://www.mdpi.com/2075-5309/10/12/213/htm (date of application: 5.02.2022).
  • Petrenko, V.F. The natural frequency of a two-span truss. AlfaBuild. 2021. (20). Pp. 2001. DOI:10.34910/ALF.20.1.
  • Vorobev, O.V. Bilateral Analytical Estimation of the First Frequency of a Plane Truss. Construction of Unique Buildings and Structures. 2020. 92(7). Pp. 9204–9204. DOI:10.18720/CUBS.92.4. URL: https://unistroy.spbstu.ru/article/2020.92.4 (date of application: 27.02.2021).
  • Kirsanov, M., Safronov, V. Analytical estimation of the first natural frequency and analysis of a planar regular truss oscillation spectrum. Magazine of Civil Engineering. 2022. 111(3). DOI:10.34910/MCE.111.14.
  • Sviridenko, O. V, Komerzan, E. V. The dependence of the natural oscillation frequency of the console truss on the number of panels. Construction of Unique Buildings and Structures. 2022. 101. Pp. 10101. DOI:10.4123/CUBS.101.1.
  • Degertekin, S.O., Yalcin Bayar, G., Lamberti, L. Parameter free Jaya algorithm for truss sizing-layout optimization under natural frequency constraints. Computers & Structures. 2021. 245. Pp. 106461. DOI:10.1016/J.COMPSTRUC.2020.106461.
  • Kaveh, A., Hosseini, S.M., Zaerreza, A. Size, Layout, and Topology Optimization of Skeletal Structures Using Plasma Generation Optimization. Iranian Journal of Science and Technology, Transactions of Civil Engineering 2020 45:2. 2020. 45(2). Pp. 513–543. DOI:10.1007/S40996-020-00527-1. URL: https://link.springer.com/article/10.1007/s40996-020-00527-1 (date of application: 4.03.2022).
  • Kaveh, A. Optimal analysis of structures by concepts of symmetry and regularity. Optimal Analysis of Structures by Concepts of Symmetry and Regularity. 2013. 9783709115. Pp. 1–463. DOI:10.1007/978-3-7091-1565-7.
  • Lemonge, A.C.C., Carvalho, J.P.G., Hallak, P.H., Vargas, D.E.C. Multi-objective truss structural optimization considering natural frequencies of vibration and global stability. Expert Systems with Applications. 2021. 165. Pp. 113777. DOI:10.1016/J.ESWA.2020.113777.
  • Rakhmatulina, A.R., Smirnova, A.A. The dependence of the deflection of the arched truss loaded on the upper belt, on the number of panels. Science Almanace. 2017. 28(2–3). Pp. 268–271. DOI:10.17117/na.2017.02.03.268. URL: http://ucom.ru/doc/na.2017.02.03.268.pdf (date of application: 9.05.2021).
  • Kazmiruk, I.Y. On the arch truss deformation under the action of lateral load. Science Almanac. 2016. 17(3–3). Pp. 75–78. DOI:10.17117/na.2016.03.03.075. URL: http://ucom.ru/doc/na.2016.03.03.075.pdf (date of application: 9.05.2021).
  • Kirsanov, M., Maslov, A. Estimation of the Natural Vibration Frequency of a Triangular Mast. AlfaBuild. 2021. 17(1704). DOI:10.34910/ALF.17.4.
  • Chen, J., Zhang, W., Zhang, Y.F. Equivalent continuum model and nonlinear breathing vibrations of rotating circular truss antenna subjected to thermal excitation. Thin-Walled Structures. 2020. 157. Pp. 107127. DOI:10.1016/J.TWS.2020.107127.
  • Santana, M.V.B., Gonçalves, P.B., Silveira, R.A.M. Closed-form solutions for the symmetric nonlinear free oscillations of pyramidal trusses. Physica D: Nonlinear Phenomena. 2021. 417. Pp. 132814. DOI:10.1016/J.PHYSD.2020.132814.
  • Li, S., Jiang, W., Zhu, X., Xie, X. Effect of localized defects on mechanical and creep properties for pyramidal lattice truss panel structure by analytical, experimental and finite element methods. Thin-Walled Structures. 2022. 170. Pp. 108531. DOI:10.1016/J.TWS.2021.108531.
  • Queheillalt, D.T., Wadley, H.N.G. Pyramidal lattice truss structures with hollow trusses. Materials Science and Engineering A. 2005. 397(1–2). Pp. 132–137. DOI:10.1016/J.MSEA.2005.02.048.
  • Wang, Y.Z., Ma, L. Sound insulation performance of membrane-type metamaterials combined with pyramidal truss core sandwich structure. Composite Structures. 2021. 260. Pp. 113257. DOI:10.1016/J.COMPSTRUCT.2020.113257.
  • Zhang, G., Wang, B., Ma, L., Xiong, J., Wu, L. Response of sandwich structures with pyramidal truss cores under the compression and impact loading. Composite Structures. 2013. 100. Pp. 451–463. DOI:10.1016/J.COMPSTRUCT.2013.01.012.
  • Ufimtsev, E., Voronina, M. Research of Total Mechanical Energy of Steel Roof Truss during Structurally Nonlinear Oscillations. Procedia Engineering. 2016. 150. Pp. 1891–1897. DOI:10.1016/J.PROENG.2016.07.188.
  • Kirsanov, M.N. Deformations And Spatial Structure Vibrations Frequency of The Rectangular Contour Type Cover: Analytical Solutions. Construction of Unique Buildings and Structures. 2021. 98(5). Pp. 9805. DOI:10.4123/CUBS.98.5.
  • Bekdaş, G., Yucel, M., Nigdeli, S.M. Evaluation of metaheuristic-based methods for optimization of truss structures via various algorithms and lèvy flight modification. Buildings. 2021. 11(2). Pp. 1–25. DOI:10.3390/BUILDINGS11020049.
  • Bekdaş, G., Nigdeli, S.M., Yang, X.S. Sizing optimization of truss structures using flower pollination algorithm. Applied Soft Computing. 2015. 37. Pp. 322–331. DOI:10.1016/J.ASOC.2015.08.037.
  • Buka-Vaivade, K., Kirsanov, M.N., Serdjuks, D.O. Calculation of deformations of a cantilever-frame planar truss model with an arbitrary number of panels. Vestnik MGSU. 2020. (4). Pp. 510–517. DOI:10.22227/1997-0935.2020.4.510-517.
  • Kirsanov, M. Trussed Frames and Arches: Schemes and Formulas. Cambridge Scholars Publishing Lady Stephenson Library. Newcastle upon Tyne, GB, 2020.
  • Kirsanov, M., Vorobyev, O. Calculating of a spatial cantilever truss natural vibration frequency with an arbitrary number of panels: analytical solution. Construction of Unique Buildings and Structures. 2021. 94. Pp. 9402. DOI:10.4123/CUBS.94.2.
  • Goloskokov, D.P., Matrosov, A. V. Comparison of two analytical approaches to the analysis of grillages. 2015 International Conference on “Stability and Control Processes” in Memory of V.I. Zubov, SCP 2015 - Proceedings. 2015. Pp. 382–385. DOI:10.1109/SCP.2015.7342169.
  • Goloskokov, D.P., Matrosov, A. V. Approximate analytical solutions in the analysis of thin elastic plates. AIP Conference Proceedings. 2018. 1959. DOI:10.1063/1.5034687.
  • Goloskokov, D.P., Matrosov, A. V. Approximate analytical approach in analyzing an orthotropic rectangular plate with a crack. Materials Physics and Mechanics. 2018. 36(1). Pp. 137–141. DOI:10.18720/MPM.3612018_15.
Еще
Статья научная