Углекислые растения растительного происхождения, их роль в защите от стресса и возможное практическое использование

Автор: Руденко Н.Н., Игнатова Л.К., Журикова Е.М., Новичкова Н.С., Иванов В.Н.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 1 т.14, 2018 года.

Бесплатный доступ

В обзоре представлены данные о распределении углекислых ангидраз в фотосинтезирующих организмах и их расположении в клеточных компартментах. Обсуждаются функции карбоангидраз для обеспечения высокой скорости фотосинтеза, а также их участие в процессах, которые не имеют прямого отношения к фотосинтезу, в частности в передаче сигналов для активации каскада генов защитного ответа. Приведены результаты, показывающие изменение активности и содержания ангидразов углекислого газа в ответ на изменения условий окружающей среды. На основе собственных экспериментальных исследований предложены механизмы участия углекислотных хлоропластных тилакоидов высших растений в защите фотосинтетического аппарата от чрезмерного освещения. Указывается на возможность использования мутантов карбоангидразы для практических целей в сельском хозяйстве, а также применения углекислых ангидраз для связывания избыточного CO2 в воздухе.

Еще

Короткий адрес: https://sciup.org/143165194

IDR: 143165194

Список литературы Углекислые растения растительного происхождения, их роль в защите от стресса и возможное практическое использование

  • Alber B.E. and Ferry J.G. (1994) A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc. Natl. Acad. Sci. USA, 91, 6909-6913
  • Allen J.F. (2002) Plastoquinone redox control of chloroplast thylakoid protein phosphorylation and distribution of excitation energy between photosystems: discovery, background, implications. Photosynth. Res., 73, 139-148
  • Buren S. (2010) Targeting and function of CAH1-Characterisation of a novel protein pathway to the plant cell chloroplast. PhD Thesis, Umea University, Sweden
  • Cardol P., Vanrobaeys F., Devreese B., Van Beeumen J., Matagne R.F. and Remacle C. (2004) Higher plant-like subunit composition of mitochondrial complex I from Chlamydomonas reinhardtii: 31 conserved components among eukaryotes. Biochim Biophys Acta, 1658, 212-224
  • Cox E.H., McLendon G.L., Morel F.M.M., Lane T.W., Prince R.C., Pickering I.J. and Graham N.G. (2000) The active site structure of Thalassiosira weissflogii carbonic anhydrase. Biochemistry, 39(40), 12128-12130
  • DiMario R.J., Clayton H., Mukherjee A., Ludwig M. and Moroney J.V. (2017) Plant carbonic anhydrases: structures, locations, evolution, and physiological roles. Mol. Plant., 10, 30-46. 35 DiMario R.J., Quebedeaux J.C., Longstreth D., Dassanayake M., Hartman M.M. and Moroney J.V. (2016) The cytoplasmic carbonic anhydrases βCA2 and βCA4 are required for optimal plant growth at low CO2. Plant Physiol., 171(1), 280-293
  • Edwards G.E. and Mohamed A.K. (1973) Reduction of carbonic anhydrase activity in zinc deficient leaves of Phaseolus vulgaris L. Crop Sci., 13, 351-354
  • Fabre N., Reiter I.M., Becuwe-Linka N., Genty B. and Rumeau D. (2007) Characterization and expression analysis of genes encoding alpha and beta carbonic anhydrases in Arabidopsis. Plant Cell Environ., 30, 617-629
  • Fedorchuk T., Rudenko N., Ignatova L. and Ivanov B. (2014) The presence of soluble carbonic anhydrase in the thylakoid lumen of chloroplasts from Arabidopsis leaves. J. Plant Physiol., 171(11), 903-906
  • Ferreira F.J., Guo C. and Coleman J.R. (2008) Reduction of plastid-localized carbonic anhydrase activity results in reduced Arabidopsis seedling survivorship. Plant Physiol., 147, 585-594
  • Frick U.B. and Schaller A. (2002) cDNA microarray analysis of fusicoccin-induced changes in gene expression in tomato plants. Planta, 216, 83-94
  • Frigerio S., Campoli C., Zorzan S., Fantoni L.I., Crosatti C., Drepper F., Haehnel W., Cattivelli L., Morosinotto T. and Bassi R. (2007) Photosynthetic antenna size in higher plants is controlled by the plastoquinone redox state at the post-transcriptional rather than transcriptional level. J. Biol. Chem., 282, 29457-29469
  • Friso G., Giacomelli L., Ytterberg A.J., Peltier J.B., Rudella A., Sun, Q. and van Wijk K.J. (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database, Plant Cell, 16, 478-499
  • Hewett-Emmett D. and Tashian R.E. (1996) Functional diversity, conservation, and convergence in the evolution of the α, β, and γ-carbonic anhydrase gene families. Mol. Phylogenet. Evol., 5, 50-77
  • Hoang C.V. and Chapman K.D. (2002) Biochemical and molecular inhibition of plastidial carbonic anhydrase reduces the incorporation of acetate into lipids in cotton embryos and tobacco cell suspensions and leaves. Plant Physiol., 128, 1417-1427
  • Hu H., Boisson-Dernier A., Israelsson-Nordstrom M., Bohmer M., Xue S., Ries A., Godoski J., Kuhn J.M. and Schroeder J.I. (2010) Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat. Cell Biol., 12, 87-93
  • Ignatova L.K., Moskvin O.V., Romanova A.K. and Ivanov B.N. (1998) Carbonic anhydrases in the C3-plant leaf cell. Aust. J. Plant Physiol., 25, 673-677
  • Ignatova L.K. and Romanova A.K. (1992) Involvement of carbonic anhydrase in inhibition of photosynthesis of pea protoplasts by CO2 excess. Sov. Plant Physiol., 39, 461-465
  • Ignatova L. K., Moskvin O. V., and Ivanov B. N. (2001) Effects of carbonic anhydrase inhibitors on proton exchange and photosynthesis in pea protoplasts. Russ. J. Plant Physiol., 48, 467-472
  • Ignatova L.K., Novichkova N.S., Mudrik V.A., Lyubimov V.Y., Ivanov B.N. and Romanova A.K. (2005) Growth, photosynthesis, and metabolism of sugar beet at an early stage of exposure to elevated CO2. Russ. J. Plant Physiol., 52(2), 158-164
  • Ignatova L.K., Rudenko N.N., Khristin M.S. and Ivanov B.N. (2006) Heterogeneous origin of carbonic anhydrase activity of thylakoid membranes. Biochemistry (Moscow), 71, 525-532
  • Ignatova L.K., Rudenko N.N., Mudrik V.A., Fedorchuk T.P. and Ivanov B.N. (2011) Carbonic anhydrase activity in Arabidopsis thaliana thylakoid membrane and fragments enriched with PSI or PSII. Photosynth. Res., 110, 89-98
  • Kende H. (1993) Ethylene biosynthesis. Plant Mol. Biol., 44, 283-307
  • Kupriyanova E.V., Sinetova M.A., Sung M.C., Park Y.I., Los D.A. and Pronina N.A. (2013) CO2-concentrating mechanism in cyanobacterial photosynthesis: organization, physiological role, and evolutionary origin. Photosynth. Res., 117, 133-146
  • Lane T.W., Saito M.A., George G.N., Pickering I.J., Prince R.C. and Morel F.M.M. (2005) A cadmium enzyme from a marine diatom. Nature, 435, 42-43
  • Lapointe M., MacKenzie T.D.B. and Morse D. (2008) An external δ-carbonic anhydrase in a free-living marine dinoflagellate may circumvent diffusion-limited carbon acquisition. Plant Physiol., 147, 1427-1436
  • Lazova G.N. and Stemler A.J. (2008) A 160 kDa protein with carbonic anhydrase activity is compexed with rubisco on the outer surface of thylakoids. Cell Biol. Int. 32, 646-653
  • Liljas A., Kannan K.K. and Bergsten P. (1972) Crystal structure of human carbonic anhydrase C. Nature. New Biol., 235, 131-137
  • Liljas A. and Laurberg M. (2000) A wheel invented three times. The molecular structures of the three carbonic anhydrases. EMBO Reports, 1(1), 16-17
  • Lu Y.K. and Stemler A.J. (2002) Extrinsic photosystem II carbonic anhydrase in maize mesophyll chloroplasts. Plant Physiol., 128, 643-649
  • Maciejewska U., Polkowska-Kowalczyk L., Swiezewska E. and Szkopinskae A. (2002) Plastoquinone: possible involvement in plant disease resistance. Acta Biochim. Pol., 49, 775-780
  • Maeda S., Badger M.R. and Price G.D. (2002) Novel gene products associated with NdhD3/D4-containing NDH-1complexes are involved in photosynthetic CO2 hydration in the cyanobacterium Synechococcus sp. PCC7942. Mol. Microbiol., 43, 425-435
  • Majeau N., Arnoldo M. and Coleman J.R. (1994) Modification of carbonic anhydrase activity by antisense and over-expression constructs in transgenic tobacco. Plant Mol. Biol., 25, 377-385
  • Majeau N., and Coleman J.R. (1996) Effect of CO2 concentration on carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase expression in pea. Plant Physiol., 112(2), 569-574
  • Makita Y., Shimada S., Kawashima, M., Kondou-Kuriyama, T., Tetsuro Toyoda, T., and Matsui, M. (2015) MOROKOSHI: transcriptome database in Sorghum bicolor. Plant Cell Physiol., 56, e6 (1-8)
  • McGinn P.J. and Morel F.M. (2008) Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey. Physiol. Plant., 133(1), 78-91
  • Moroney J.V., Ma Y., Frey W.D., Fusilier K.A., Pham T.T., Simms T.A., DiMario R.J., Yang J. and Mukherjee B. (2011) The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. Photosynth. Res., 109, 133-149
  • Moskvin O.V., Shutova T.V., Khristin M.S., Ignatova L.K., Villarejo A., Samuelsson G., Klimov V.V. and Ivanov B.N. (2004) Carbonic anhydrase activities in pea thylakoids. Photosynth. Res., 79(1), 93-100
  • Newman T., deBruijn F.J. and Green P. (1994) Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol., 106, 1241-1255
  • Park H., Song B. and Morel F.M.M. (2007) Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters. Environ. Microbiol., 9, 403-413
  • Perales M., Eubel H., Heinemeyer J., Colaneri A., Zabaleta E. and Braun H.P. (2005) Disruption of a nuclear gene encoding a mitochondrial gamma carbonic anhydrase reduces complex I and supercomplex I + III2 levels and alters mitochondrial physiology in Arabidopsis. J. Mol. Biol., 350, 263-277
  • Pieterse C.M., Van Der Does D., Zamioudis C., Leon-Reyes A., and Van Wees S.C. (2012) Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol., 28, 489-521
  • Porter M.A. and Grodzinski B. (1984) Acclimation to high CO2 in bean carbonic anhydrase and ribulose bisphosphate carboxylase. Plant Physiol., 74, 413-416
  • Price G.D., Badger M.R., Bassett M.E., and Canberra A.C. (1985) Involvement of plasmalemmasomes and carbonic anhydrase in photosynthetic utilization of bicarbonate in Chara corrallina, Austral. J. Plant Physiol., 12, 241-256
  • Price G. D., von Caemmerer S., Evans J. R., Yu J. W., Lloyd J., Oja V., Kell P., Harrison K., Gallagher A. and Badger M.R. (1994) Specific reduction of chloroplast carbonic anhydrase activity by anti-sense RNA in transgenic tobacco plants has a minor effect on photosynthetic CO2 assimilation. Planta, 193, 331-340
  • Prins H.B.A. and Helder R.J. (1985) HCO3ˉ assimilation by Potamogeton lucens: polar cation transport and the role of H+ extrusion. In Lucas W. J., and Merry J. A. (eds.) Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms, American Society of Plant Physiology, Rockville, Maryland, USA, pp. 271-286
  • Pronina N.A., Allakhverdiev S.I, Kupriyanova E.V., Klyachko-Gurvich G.L. and Klimov V.V. (2002) Carbonic anhydrase in subchloroplast particles of pea plants. Russ. J. Plant Physiol., 49(3), 303-310
  • Restrepo S., Myers K.L., del Pozo O., Martin G.B., Hart A.L., Buell C.R., Fry W.E. and Smart C.D. (2005) Gene profiling of a compatible interaction between Phytophthora infestans and Solanum tuberosum suggests a role for carbonic anhydrase. Mol. Plant-Microbe Int., 18(9), 913-922
  • Roberts S.B., Lane T.W. and Morel F.M.M. (1997) Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J. Phycol., 33, 845-850
  • Rudenko N.N., Ignatova L.K. and Ivanov B.N. (2007) Multiple sources of carbonic anhydrase activity in pea thylakoids: soluble and membrane-bound forms. Photosynth. Res., 91(1), 81-89
  • Rudenko N.N., Ignatova L.K., Fedorchuk T.P. and Ivanov B.N. (2015) Carbonic anhydrases in photosynthetic cells of higher plants. Biochemistry (Moscow), 80(6), 674-687
  • Rudenko N.N., Vetoshkina D.V., Fedorchuk T.P. and Ivanov B.N. (2017) Effect of light intensity under different photoperiods on expression level of Carbonic Anhydrase genes of the α-and β-families in Arabidopsis thaliana leaves. Biochemistry (Moscow), 82(9), 1025-1035
  • Rudenko N.N., Fedorchuk T.P., Vetoshkina D.V., Zhurikova E.M., Ignatova L.K. and Ivanov B.N. (2018) Influence of knockout of At4g20990 gene encoding α-CA4 on photosystem II light-harvesting antenna in plants grown under different light intensities and day lengths. Protoplasma, 255(1), 69-78
  • Schenk P.M., Kazan K., Wilson I., Anderson J.P., Richmond T., Somerville S.C. and Manners J.M. (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci., 97, 11655-11660
  • Slaymaker D.H., Navarre D.A., Clark D., del Pozo O., Martin G.B., Klessig D. (2002) The tobacco salicylic acid binding protein 3 (SABP3) is the chloroplast carbonic anhydrase which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc. Natl. Acad. Sci. USA, 99(10), 11640-11645
  • So A.K.C. and Espie G.S. (2005) Cyanobacterial carbonic anhydrases. Can. J. Bot., 83, 721-734
  • So A.K.С., Espie G.S., Williams E.B., Shively J.M., Heinhorst S. and Cannon G.C. (2004) A novel evolutionary lineage of carbonic anhydrase (epsilon class) is a component of the carboxysome shell. J. Bacteriol., 186, 623-630
  • Tachibana M., Allen A. E., Kikutani S., Endo Y., Bowler C. and Matsuda Y. (2011) Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Photosynth. Res., 109, 205-221
  • Utsunomia E. and Muto S. (1993) Carbonic anhydrase in the plasma membranes from C3 and C4 plants. Physiol. Plant., 88, 413-419
  • Villarejo A., Buren S., Larsson S., Dejardin A., Monne M., Rudhe C., Karlsson J., Jansson S., Lerouge P., Rolland N., von Heijne G., Grebe M., Bako L. and Samuelsson G. (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast, Nature Cell Biol., 7, 1224-1231
  • Wang M., Lawal A., Stephenson P., Sidders J. and Ramshaw C. (2011) Post-combustion CO2 capture with chemical absorption: A state of the art review. Chem. Eng. Res. Des., 89, 1609-1624
  • Xue S., Hu H., Ries A., Merilo E., Kollist H. and Schroeder J.I. (2011) Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell. EMBO J., 30(8), 1645-1658
  • Zhurikova E.M., Ignatova L.K., Semenova G., Rudenko N.N., Mudrik V.A. and Ivanov B.N. (2015) Effect of knockout of α-carbonic anhydrase 4 gene on photosynthetic characteristics and starch accumulation in leaves of Arabidopsis thaliana. Russ. J. Plant Physiol., 62, 564-569
  • Zhurikova E.M., Ignatova L.K., Rudenko N.N., Mudrik V.A., Vetoshkina D.V. and Ivanov B.N. (2016) The participation of two carbonic anhydrases of alpha family in photosynthetic reactions in Arabidopsis thaliana. Biochemistry (Moscow), 81(10), 1182-1187
Еще
Статья обзорная