Unlocking the potential of fungal extracts as inhibitors of biofilm formation and improving human health

Автор: Roychoudhury Aryadeep, Sarkar Ranit, Sarkar Rohita

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 3 т.20, 2024 года.

Бесплатный доступ

The emerging threat of antibiotic resistance and the formation of resilient biofilms pose a challenge to contemporary healthcare systems. This review dives into the interplay between antibiotic resistance mechanisms and biofilm production. Many pathogenic bacteria have an inherent ability of adhering tightly to a surface forming a complex matrix of extracellular polymeric substances (EPS) surrounding their cells. This is called a biofilm which allows pathogenic bacteria to survive in unsuitable environment. The adaptive nature of biofilms provides a protective shield against conventional antimicrobial agents, promoting chronic infections and complicating medical interventions. This phenomenon further adds to the ever-increasing problem of antibiotic resistance. Thus, there is an immediate necessity in developing novel strategies to deal with bacterial biofilms. In terms of human health, biofilms can be formed on mucosal surfaces and on surfaces of medical equipment. They are also a major reason for causing ‘biofouling’. Different approaches have been undertaken to counteract the menace of biofilms encompassing physical, chemical as well as biological methods. However, recent studies have shown that natural bioactive compounds found in fungal extracts, which has already been gaining attention due to their various properties like immunomodulatory activity, anti-tumor activity, antimicrobial activity etc., have the ability to prevent the formation as well as viability of biofilms through numerous mechanisms. This article thus explores the nuances of biofilm formation and its effects, and further delves deep into the convincing potential of the different components in fungal extracts against bacterial biofilms.

Еще

Bacterial biofilms, antibiotic resistance, fungal extracts, fungal metabolites, antibacterial activity, quorum sensing, metabolic inhibition, enzymatic degradation, eco-friendly

Короткий адрес: https://sciup.org/143182807

IDR: 143182807

Список литературы Unlocking the potential of fungal extracts as inhibitors of biofilm formation and improving human health

  • Abdel-Rahman, T., Hussein, A. S., Beshir, S., Hamed, A. R., Ali, E., & El-Tanany, S. S. (2019). Antimicrobial activity of terpenoids extracted from Annona muricata seeds and its endophytic Aspergillus niger strain SH3 either singly or in combination. Open Access Macedonian Journal of Medical Sciences, 7(19), 3127.
  • Ahmadjian, V., Moore, David and Alexopoulos, Constantine John (2023, December 23). fungus. Encyclopedia Britannica. https://www.britannica.com/science/fungus
  • Antonelli, M., De Pascale, G., Ranieri, V. M., Pelaia, P., Tufano, R., Piazza, O., Zangrillo, A., Ferrario, A., De Gaetano, A., Guaglianone, E., & Donelli, G. (2012). Comparison of triple-lumen central venous catheters impregnated with silver nanoparticles (AgTive®) vs conventional catheters in intensive care unit patients. Journal of Hospital Infection, 82(2), 101-107.
  • Bai, Z. Q., Lin, X., Wang, Y., Wang, J., Zhou, X., Yang, B.....& Liu, Y. (2014). New phenyl derivatives from endophytic fungus Aspergillus flavipes AIL8 derived of mangrove plant Acanthus ilicifolius. Fitoterapia, 95, 194-202.
  • Boles, B. R., & Horswill, A. R. (2008). agr-Mediated Dispersal of Staphylococcus aureus Biofilms. PLOS Pathogens, 4(4), e1000052.
  • Burrowes, B., Harper, D. R., Anderson, J. S., McConville, M., & Enright, M. C. (2011). Bacteriophage therapy: potential uses in the control of antibiotic-resistant pathogens. Expert Review of Anti-infective Therapy, 9(9), 775-785.
  • Cai, C., Ma, J., Han, C., Jin, Y., Zhao, G., & He, X. (2019). Extraction and antioxidant activity of total triterpenoids in the mycelium of a medicinal fungus, Sanghuangporus sanghuang. Scientific reports, 9(1), 7418.
  • Calvo, A. M., Wilson, R. A., Bok, J. W., & Keller, N. P. (2002). Relationship between Secondary Metabolism and Fungal Development. Microbiology and Molecular Biology Reviews, 66(3), 447-459.
  • Carlson, R. P., Taffs, R., Davison, W. M., & Stewart, P. S. (2008). Anti-biofilm properties of chitosan-coated surfaces. Journal of Biomaterials Science, Polymer Edition, 19(8), 1035-1046.
  • Cascioferro, S., Maggio, B., Raffa, D., Raimondi, M. V., Cusimano, M. G., Schillaci, D..... & Daidone, G. (2016). A new class of phenylhydrazinylidene derivatives as inhibitors of Staphylococcus aureus biofilm formation. Medicinal Chemistry Research, 25, 870-878.
  • Chambers, J. R., & Sauer, K. (2013). Small RNAs and their role in biofilm formation. Trends in Microbiology, 21(1), 39-49.
  • Chamidah, A., Hardoko, H., &Prihanto, A. A. (2017, May). Antibacterial activities of p-glucan (laminaran) against gram-negative and grampositive bacteria. In AIP conference proceedings (Vol. 1844, No. 1). AIP Publishing.
  • Chang, A. K. T., Frias Jr, R. R., Alvarez, L. V., Bigol, U. G., & Guzman, J. P. M. D. (2019). Comparative antibacterial activity of commercial chitosan and chitosan extracted from Auricularia sp. Biocatalysis and agricultural biotechnology, 17, 189-195.
  • Cheng, J.-J., Lin, C.-Y., Lur, H.-S., Chen, H.-P., & Lu, M.-K. (2008). Properties and biological functions of polysaccharides and ethanolic extracts isolated from medicinal fungus, Fomitopsis pinicola. Process Biochemistry, 43(8), 829-834.
  • Choi, Y. J., Kim, S., Bae, S., Kim, Y., Chang, H. H., & Kim, J. (2022). Antibacterial Effects of recombinant endolysins in Disinfecting Medical Equipment: a pilot study. Frontiers in Microbiology, 12, 773640.
  • Chung, P. Y., &Toh, Y. S. (2014). Anti-biofilm agents: recent breakthrough against multi-drug resistant Staphylococcus aureus. Pathogens and Disease, 70(3), 231-239.
  • Clarke, M. B., Hughes, D. T., Zhu, C., Boedeker, E. C., & Sperandio, V. (2006). The QseC sensor kinase: a bacterial adrenergic receptor. Proceedings of the National Academy of Sciences of the United States of America, 103(27), 10420-10425.
  • Costerton, J. W., Cheng, K., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupta, M., & Marrie, T. J. (1987). Bacterial biofilms in nature and disease. Annual Review of Microbiology, 41(1), 435-464.
  • Cusumano, C. K., Pinkner, J. S., Han, Z., Greene, S. E., Ford, B. A., Crowley, J. R., Henderson, J. P., Janetka, J. W., & Hultgren, S. J. (2011). Treatment and prevention of urinary tract infection with orally active FimH inhibitors. Science translational medicine, 3(109), 109ra115.
  • Daley, D. K., Brown, K. J., & Badal, S. (2017). Fungal metabolites. In Pharmacognosy (pp. 413-421). Academic Press.
  • Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic-resistance. Microbiology and molecular biology reviews: MMBR, 74(3), 417-433.
  • Dethlefsen, L., Huse, S. M., Sogin, M. L., &Relman, D. A. (2008). The pervasive effects of an antibiotic on the human gut microbiota, as revealed by Deep 16S RRNA sequencing. PLoS Biology, 6(11), e280.
  • Dhevagi, P., Ramya, A., Priyatharshini, S., Geetha Thanuja, K., Ambreetha, S., &Nivetha, A. (2021). Industrially important fungal enzymes: productions and applications. In: Recent Trends in Mycological
  • Research: Volume 2: Environmental and Industrial Perspective, 263-309.
  • Donlan, R. M. (2011). Biofilm elimination on intravascular catheters: important considerations for the infectious disease practitioner. Clinical Infectious Diseases, 52(8), 1038-1045.
  • Elfita, E., Larasati, J. E., & Widjajanti, H. (2019). Antibacterial activity of Cordyline fruticosa leaf extracts and its endophytic fungi extracts. Biodiversitas Journal of Biological Diversity, 20(12).
  • Ellis, J. R., Bull, J. J., & Rowley, P. A. (2023). Fungal glycoside hydrolases display unique specificities for polysaccharides and Staphylococcus aureus biofilms. Microorganisms, 11(2), 293.
  • Estrela, A. B., & Abraham, W. (2016). Fungal metabolites for the control of biofilm infections. Agriculture, 6(3), 37.
  • Estrela, A. B., & Abraham, W.-R. (2016). Fungal Metabolites for the Control of Biofilm Infections. Agriculture, 6(3).
  • Feussner, K., &Feussner, I. (2019). Comprehensive LC-MS-based metabolite fingerprinting approach for plant and fungal-derived samples. In: High-throughput metabolomics: Methods and protocols, 167-185.
  • Fey P. D. (2010). Modality of bacterial growth presents unique targets: how do we treat biofilm-mediated infections?. Current opinion in microbiology, 13(5), 610-615.
  • Fleming A. (1929). On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to their Use in the Isolation of B. influenzae. British journal of experimental pathology, 10(3), 226-236.
  • Flemming, H. C. (2002). Biofouling in water systems-cases, causes and countermeasures. Applied microbiology and biotechnology, 59(6), 629-640.
  • Foxman, B. (2010). The epidemiology of urinary tract infection. Nature Reviews. Urology (Print), 7(12), 653-660.
  • Fuqua, W. C., Winans, S. C., & Greenberg, E. P. (1994). Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 176(2), 269-275.
  • Gjermansen, M., Nilsson, M., Yang, L., & Tolker-Nielsen, T. (2010). Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Molecular Microbiology, 75(4), 815826.
  • Glasenapp, Y., Catto, C., Villa, F., Saracchi, M., Cappitelli, F., & Papenbrock, J. (2019). Promoting Beneficial and Inhibiting Undesirable Biofilm Formation with Mangrove Extracts. International Journal of Molecular Sciences, 20(14), 3549.
  • H0iby, N., Bjarnsholt, T., Givskov, M., Molin, S., & Ciofu, O. (2010). Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 35(4), 322-332.
  • Horev, B., Klein, M. I., Hwang, G., Li, Y., Kim, D., Koo, H., & Benoit, D. S. (2015). pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. ACS nano, 9(3), 2390-2404.
  • Hutchings, M. I., Truman, A. W., & Wilkinson, B. (2019). Antibiotics: past, present and future. Current Opinion in Microbiology, 51, 72-80.
  • Jabra-Rizk, M. A., Meiller, T. F., James, C., & Shirtliff, M. E. (2006). Effect of Farnesol on Staphylococcus aureus Biofilm Formation and Antimicrobial Susceptibility. Antimicrobial Agents and Chemotherapy, 50(4), 1463-1469.
  • Jeihanipour, A., Karimi, K., &Taherzadeh, M. J. (2007). Antimicrobial properties of fungal chitosan. Research Journal of Biological Sciences, 2(3), 239.
  • Jiang, Y., Geng, M., & Bai, L. (2020). Targeting Biofilms therapy: Current research strategies and development hurdles. Microorganisms, 8(8), 1222.
  • Jose, N., Ajith, T. A., & Janardhanan, K. K. (2004). Methanol extract of the oyster mushroom, Pleurotus florida, inhibits inflammation and platelet aggregation. Phytotherapy research: PTR, 18(1), 43-46.
  • Joshi, P. K., Swarup, A., Maheshwari, S., Kumar, R., & Singh, N. (2011). Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Indian journal of microbiology, 51, 482-487.
  • Kadhim, M. J., Mohammed, G. J., & Hussein, H. (2016). Analysis of bioactive metabolites from Candida albicans using (GC-MS) and evaluation of antibacterial activity. International Journal of Pharmaceutical and Clinical Research, 8(7), 655670.
  • Kamali, E., Jamali, A., Izanloo, A., & Ardebili, A. (2021). In vitro activities of cellulase and ceftazidime, alone and in combination against Pseudomonas aeruginosa biofilms. BMC microbiology, 21, 1-10.
  • Karas, P. A., Perruchon, C., Exarhou, K., Ehaliotis, C., & Karpouzas, D. G. (2011). Potential for bioremediation of agro-industrial effluents with high loads of pesticides by selected fungi. Biodegradation, 22, 215-228.
  • Kardos, N., & Demain, A. L. (2011). Penicillin: the medicine with the greatest impact on therapeutic outcomes. Applied microbiology and biotechnology, 92, 677-687.
  • Kaur, A., Rishi, V., Soni, S. K., & Rishi, P. (2020). A novel multi-enzyme preparation produced from Aspergillus niger using biodegradable waste: a possible option to combat heterogeneous biofilms. Amb Express, 10, 1-16.
  • Keller, N. P., Turner, G., & Bennett, J. W. (2005). Fungal secondary metabolism—from biochemistry to genomics. Nature reviews microbiology, 3(12), 937-947.
  • Kim, H. S., Hong, J. T., Kim, Y., & Han, S. B. (2011). Stimulatory effect of ß-glucans on immune cells. Immune network, 11(4), 191.
  • Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H., & Cho, M. H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: nanotechnology, biology, and medicine, 3(1), 95-101. https://doi.org/10.1016Zj.nano.2006.12.001
  • Kinsky, S. C. (1967). Polyene antibiotics. In: Antibiotics: Volume I Mechanism of Action, 122-141.
  • Koc, B., Akyuz, L., Cakmak, Y. S., Sargin, I., Salaberria, A. M., Labidi, J.....& Kaya, M. (2020). Production and characterization of chitosan-fungal extract films. Food Bioscience, 35, 100545.
  • Kostakioti, M., Hadjifrangiskou, M., & Hultgren, S. J. (2013). Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor perspectives in medicine, 3(4), a010306.
  • Kües, U. (2015). Fungal enzymes for environmental management. Current opinion in biotechnology, 33, 268-278.
  • Langsrud, S., Sidhu, M. A., Heir, E., & Holck, A. L. (2003). Bacterial disinfectant resistance - a challenge for the food industry. International Biodeterioration & Biodegradation, 51, 283-290.
  • Lee, J., Hong, J. H., Kim, J. D., Ahn, B. J., Kim, B. S., Kim, G. H., & Kim, J. J. (2013). The antioxidant properties of solid-culture extracts of basidiomycetous fungi. The Journal of General and Applied Microbiology, 59(4), 279-285.
  • Lewis, K. (2005). Persister cells and the riddle of biofilm survival. Biochemistry (Moscow), 70(2), 267-274.
  • Lewis, K. (2008). Multidrug tolerance of biofilms and persister cells. In Current Topics in Microbiology and Immunology (pp. 107-131).
  • Li, T., Yang, M., Wang, X., & Wang, Y. (2015). Synergistic Antifungal Meroterpenes and Dioxolanone Derivatives from the Endophytic Fungus Guignardia sp. Journal of Natural Products, 78(11), 2511-2520._
  • Llauradó Maury, G., Morris-Quevedo, H. J., Heykers, A., Lanckacker, E., Cappoen, D., Delputte, P..... & Cos, P. (2021). Differential induction pattern towards classically activated macrophages in response to an Immunomodulatory extract from Pleurotus ostreatus mycelium. Journal of Fungi, 7(3), 206.
  • Loiselle, M., & Anderson, K. W. (2003). The use of cellulase in inhibiting biofilm formation from organisms commonly found on medical implants. Biofouling, 19(2), 77-85.
  • Lu, C. C., Hsu, Y. J., Chang, C. J., Lin, C. S., Martel, J., Ojcius, D. M..... & Young, J. D. (2016). Immunomodulatory properties of medicinal mushrooms: differential effects of water and ethanol extracts on NK cell-mediated cytotoxicity. Innate Immunity, 22(7), 522-533.
  • Lull, C., Wichers, H. J., & Savelkoul, H. F. (2005). Antiinflammatory and immunomodulating properties of fungal metabolites. Mediators of inflammation, 2005(2), 63-80._ Lull, Cristina; Wichers, Harry J.; Savelkoul, Huub F. J. (2005). Anti inflammatory and Immunomodulating Properties of Fungal Metabolites. Mediators of Inflammation, 2005(2), 63-80.
  • Ma, L., Conover, M., Lu, H., Parsek, M. R., Bayles, K., & Wozniak, D. J. (2009). Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS pathogens, 5(3), e1000354.
  • Martín-Rodríguez, A. J., Reyes, F., Martín, J., Pérez-Yépez, J., León-Barrios, M., Couttolenc, A., Espinoza, C., Trigos, Á., MartÍN, V. S., Norte, M., & Fernández, J. J. (2014). Inhibition of Bacterial Quorum Sensing by Extracts from Aquatic Fungi: First Report from Marine Endophytes. Marine Drugs, 12(11), 5503-5526.
  • Massie, J. P., Reynolds, E., Koestler, B. J., Cong, J., Agostoni, M., & Waters, C. M. (2012). Quantification of high-specificity cyclic diguanylate signaling. Proceedings of the National Academy of Sciences of the United States of America, 109(31), 12746-12751.
  • Mazzutti, S., Ferreira, S. R., Riehl, C. A., Smania Jr, A., Smania, F. A., & Martínez, J. (2012). Supercritical fluid extraction of Agaricus brasiliensis: Antioxidant and antimicrobial activities. The Journal of Supercritical Fluids, 70, 48-56.
  • Meng, L.-Z., Lin, B.-Q., Wang, B., Feng, K., Hu, D.-J., Wang, L.-Y.....Li, S.-P. (2013). Mycelia extracts of fungal strains isolated from Cordyceps sinensis differently enhance the function of RAW 264.7 macrophages. Journal of Ethnopharmacology, 148(3), 818-825.
  • Mishra, R., Panda, A. K., De Mandal, S., Shakeel, M., Bisht, S. S., & Khan, J. (2020). Natural Anti-biofilm Agents: Strategies to Control Biofilm-Forming Pathogens. Frontiers in microbiology, 11, 566325.
  • Monds, R. D., & O'Toole, G. A. (2009). The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends in Microbiology, 17(2), 73-87.
  • Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., &Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 23462353.
  • Muhammad, M. H., Idris, A. L., Fan, X., Guo, Y., Yu, Y., Jin, X., Qiu, J., Guan, X., & Huang, T. (2020). Beyond risk: bacterial biofilms and their regulating approaches. Frontiers in Microbiology, 11.
  • Nath, S., Sinha, A., Singha, Y. S., Dey, A., Bhattacharjee, N., & Deb, B. (2020). Prevalence of antibiotic-resistant, toxic metal-tolerant and biofilm-forming bacteria in hospital surroundings. Environmental analysis, health and toxicology, 35(3), e2020018._
  • O'Toole, G. A., Kaplan, H. B., & Kolter, R. (2000). Biofilm formation as Microbial Development. Annual Review of Microbiology, 54(1), 49-79.
  • Orgaz, B., Kives, J., Pedregosa, A. M., Monistrol, I. F., Laborda, F., & SanJosé, C. (2006). Bacterial biofilm removal using fungal enzymes. Enzyme and Microbial Technology, 40(1), 51-56.
  • Overhage, J. M., Campisano, A., Bains, M., Torfs, E. C. W., Rehm, B. H. A., & Hancock, R. E. W. (2008). Human Host Defense peptide LL-37 prevents bacterial biofilm formation. Infection and Immunity, 76(9), 4176-4182.
  • Parasuraman, P., Devadatha, B., Sarma, V. V., Ranganathan, S., Ampasala, D. R., Kim, I., Patel, S., Kalia, V. C., Lee, J., & Siddhardha, B. (2020). Inhibition of Microbial Quorum Sensing Mediated Virulence Factors by Pestalotiopsis sydowiana. Journal of Microbiology and Biotechnology (Print), 30(4), 571-582.
  • Park, J. H., Lee, J. H., Kim, C. J., Lee, J. C., Cho, M. H., & Lee, J. (2012). Extracellular protease in Actinomycetes culture supernatants inhibits and detaches Staphylococcus aureus biofilm formation. Biotechnology letters, 34, 655-661.
  • Parsek, M. R., & Singh, P. K. (2003). Bacterial biofilms: an emerging link to disease pathogenesis. Annual Review of Microbiology, 57(1), 677-701.
  • Parsek, M. R., & Singh, P. K. (2003b). Bacterial biofilms: an emerging link to disease pathogenesis. Annual Review of Microbiology, 57(1), 677-701.
  • Pinheiro, E. A. A., Carvalho, J. M., dos Santos, D. C. P., Feitosa, A. D. O., Marinho, P. S. B., Guilhon, G. M. S. P..... & Marinho, A. M. D. R. (2013).
  • Antibacterial activity of alkaloids produced by endophytic fungus Aspergillus sp. EJC08 isolated from medical plant Bauhinia guianensis. Natural product research, 27(18), 1633-1638.
  • Pompilio, A., Scocchi, M., Pomponio, S., Guida, F., Di Primio, A., Fiscarelli, E., Gennaro, R., & Di Bonaventura, G. (2011). Antibacterial and anti-biofilm effects of cathelicidin peptides against pathogens isolated from cystic fibrosis patients. Peptides, 32(9), 1807-1814.
  • Poorniammal, R., Balachandar, D., & Gunasekaran, S. (2018). Evaluation of antioxidant property of some fungal pigments by DNA protection assay. Annals of Phytomedicine, 7(1), 106-111.
  • Pratt, L. A., & Kolter, R. (1998). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Molecular Microbiology (Print), 30(2), 285-293.
  • Prigent-Combaret, C., Brombacher, E., Vidal, O., Ambert, A., Lejeune, P., Landini, P., & Dorel, C. (2001). Complex Regulatory Network Controls Initial Adhesion and Biofilm Formation in Escherichia coli via Regulation of the csgD Gene. Journal of Bacteriology, 183(24), 7213-7223.
  • Pur, S., Amna, T., Khajuria, A., Gupta, A., Arora, R., Spiteller, M., & Qazi, G. (2007). Immunomodulatory activity of an extract of the novel fungal endophyte Entrophospora infrequens isolated from Nothapodytes foetida (Wight) Sleumer. Acta Microbiologica et Immunologica Hungarica, 54(3), 237-260
  • Purevdorj-Gage, B., Costerton, J. W., &Stoodley, P. (2005). Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. Microbiology, 151(5), 1569-1576.
  • Qin, Z., Yang, L., Qu, D., Molin, S., & Tolker-Nielsen, T. (2009). Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis. Microbiology (Reading, England), 155(Pt7), 2148-2156.
  • Rajasekharan, S. K., & Ramesh, S. (2013). Cellulase inhibits Burkholderia cepacia biofilms on diverse prosthetic materials. Pol J Microbiol, 62(3), 327330.
  • Roy, R., Tiwari, M., Donelli, G., & Tiwari, V. (2018). Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 9(1), 522-554.
  • Sajid, S., & Akbar, N. (2018). 1. Applications of fungal pigments in biotechnology. Pure and Applied Biology (PAB), 7(3), 922-930.
  • Salvadori, M. R., Ando, R. A., Oller Do Nascimento, C. A., & Correa, B. (2014). Bioremediation from wastewater and extracellular synthesis of copper nanoparticles by the fungus Trichoderma koningiopsis. Journal of Environmental Science and Health, Part A, 49(11), 1286-1295.
  • Santra, H. K., Maity, S., & Banerjee, D. (2022). Production of bioactive compounds with broad spectrum bactericidal action, bio-film inhibition and antilarval potential by the secondary metabolites of the endophytic fungus Cochliobolus sp. APS1 isolated from the Indian medicinal herb Andrographis paniculata. Molecules, 27(5), 1459.
  • Sauer, K., Cullen, M., Rickard, A. H., Zeef, L., Davies, D. G., & Gilbert, P. (2004). Characterization of Nutrient-Induced Dispersion in Pseudomonas aeruginosa PAO1 Biofilm. Journal of Bacteriology, 186(21), 7312-7326.
  • Seginti, K. D., Özalp, H., Attar, A., & Sargon, M. F. (2011). Nanoparticle silver ion coatings inhibit biofilm formation on titanium implants. Journal of Clinical Neuroscience, 18(3), 391-395.
  • Shah, M., Sun, C., Sun, Z., Zhang, G., Che, Q., Gu, Q., ... & Li, D. (2020). Antibacterial polyketides from antarctica sponge-derived fungus Penicillium sp. HDN151272. Marine Drugs, 18(2), 71.
  • Shekhar, R. B., Bapat, G., Jitendra, G. V., Sandhya, A. G., & Hiralal, B. S. (2010). Antimicrobial activity of terpenoid extracts from Ganoderma samples. International Journal of Pharmacy and Life Sciences (IJPLS), 1(4), 234-240.
  • Shobha, B., Ashwini, B. S., Ghazwani, M., Hani, U., Atwah, B., Alhumaidi, M. S..... & Ansari, M. A. (2023). Trichoderma-mediated ZnO nanoparticles and their antibiofilm and antibacterial activities. Journal of Fungi, 9(2), 133.
  • Simoes, M., & Vieira, M. J. (2009). Persister cells in Pseudomonas fluorescens biofilms treated with a biocide. In Proceedings of the international conference processes in biofilms: Fundamentals to applications (pp. 58-62), Davis, CA, USA.
  • Simoes, M., Simoes, L. C., Machado, I., Pereira, M. O., & Vieira, M. J. (2006). Control of flow-generated biofilms using surfactants - evidence of resistance and recovery. Food and Bioproducts Processing, 84, 338-345.
  • Singh, V., Verma, N., Banerjee, B., Vibha, K., Haque, S., & Tripathi, C. K. M. (2015). Enzymatic degradation of bacterial biofilms using Aspergillus clavatus MTCC 1323. Microbiology, 84, 59-64.
  • Smedsgaard, J. (1997). Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. Journal of Chromatography A, 760(2), 264-270.
  • Soliman, M. K., Salem, S. S., Abu-Elghait, M., & Azab, M. S. (2023). Biosynthesis of silver and gold nanoparticles and their efficacy towards antibacterial, antibiofilm, cytotoxicity, and antioxidant activities. Applied Biochemistry and Biotechnology, 195(2), 1158-1183.
  • Spellberg, B., Bartlett, J. G., & Gilbert, D. N. (2013). The future of antibiotics and resistance: a tribute to a career of leadership by John Bartlett. Clinical Infectious Diseases, 57(suppl_3), S165-S170.
  • Stoppacher, N., Kluger, B., Zeilinger, S., Krska, R., & Schuhmacher, R. (2010). Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. Journal of microbiological methods, 81(2), 187-193.
  • Synytsya, A., Monkai, J., Bleha, R., Macurkova, A., Ruml, T., Ahn, J., & Chukeatirote, E. (2017). Antimicrobial activity of crude extracts prepared from fungal mycelia. Asian Pacific Journal of Tropical Biomedicine, 7(3), 257-261.
  • Taofiq, O., Martins, A., Barreiro, M. F., & Ferreira, I. C. F. R. (2016). Anti-inflammatory potential of mushroom extracts and isolated metabolites. Trends in Food Science & Technology, 50, 193210.
  • Thaya, R., Malaikozhundan, B., Vijayakumar, S., Sivakamavalli, J., Jeyasekar, R., Shanthi, S.....& Sonawane, A. (2016). Chitosan coated Ag/ZnO nanocomposite and their antibiofilm, antifungal and cytotoxic effects on murine macrophages. Microbial pathogenesis, 100, 124-132.
  • Úbeda, C., Taur, Y., Jenq, R. R., Equinda, M., Son, T., Samstein, M., Viale, A., Socci, N. D., Van Den Brink, M. R., Kamboj, M., & Pamer, E. G. (2010). Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. Journal of Clinical Investigation, 120(12), 4332-4341.
  • Ujam, N. T., Ajaghaku, D. L., Okoye, F. B., & Esimone, C. O. (2021). Antioxidant and immunosuppressive activities of extracts of endophytic fungi isolated from Psidium guajava and Newbouldia laevis. Phytomedicine plus, 1(2), 100028.
  • Vaksmaa, A., Guerrero-Cruz, S., Ghosh, P., Zeghal, E., Hernando-Morales, V., & Niemann, H. (2023). Role of fungi in bioremediation of emerging pollutants. Frontiers in Marine Science, 10, 1070905.
  • Van Oss, C. J., Good, R. J., & Chaudhury, M. K. (1986). The role of van der Waals forces and hydrogen bonds in "hydrophobic interactions" between biopolymers and low energy surfaces. Journal of Colloid and Interface Science, 111(2), 378-390.
  • Ventola C. L. (2015). The antibiotic-resistance crisis: part 1: causes and threats. P&T: a peer-reviewed journal for formulary management, 40(4), 277-283.
  • Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A. P., & Narasimha, G. (2014). Fungal laccases and their applications in bioremediation. Enzyme research, 2014.
  • Vuong, C., Voyich, J. M., Fischer, E. R., Braughton, K. R., Whitney, A. R., DeLeo, F. R., & Otto, M. (2004). Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cellular Microbiology, 6(3), 269-275.
  • World Health Organization: WHO. (2023, November 21). Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
  • Wu, H. T., Lu, F. H., Su, Y. C., Ou, H. Y., Hung, H. C., Wu, J. S.....& Chang, C. J. (2014). In vivo and in vitro anti-tumor effects of fungal extracts. Molecules, 19(2), 2546-2556.
  • Zhang, L., & Mah, T. (2008). Involvement of a novel Efflux system in Biofilm-Specific resistance to Antibiotics. Journal of Bacteriology, 190(13), 44474452.
  • Zin, W. W. M., Buttachon, S., Dethoup, T., Pereira, J. A., Gales, L., Inacio, A..... & Kijjoa, A. (2017). Antibacterial and antibiofilm activities of the metabolites isolated from the culture of the mangrove-derived endophytic fungus Eurotium chevalieri KUFA 0006. Phytochemistry, 141, 86-97.
Еще
Статья обзорная