Управление точностью и скоростью процессов автоматизированного мониторинга строительных работ в условиях использования новых технологий

Автор: Рада А.О., Кузнецов А.Д., Акулов А.О., Коньков Н.Ю.

Журнал: Нанотехнологии в строительстве: научный интернет-журнал @nanobuild

Рубрика: Результаты исследований ученых и специалистов

Статья в выпуске: 6 т.15, 2023 года.

Бесплатный доступ

Введение. Существующие технологии автоматизированного строительного контроля не позволяют пользователю выбирать уровень детализации. В то же время в условиях применения нанотехнологий растет потребность в расширении возможностей мониторинга и контроля объектов строительства. Цель исследования - разработка, программная реализация и апробация технологии управления скоростью и точностью построения трехмерных моделей по плотным облакам точек для автоматизированного мониторинга строительных работ.

Нанотехнология, наноматериалы, мониторинг строительных работ, строительный контроль, цифровые технологии, информационная модель здания, лазерное сканирование, плотные облака точек

Короткий адрес: https://sciup.org/142239803

IDR: 142239803   |   DOI: 10.15828/2075-8545-2023-15-6-583-591

Список литературы Управление точностью и скоростью процессов автоматизированного мониторинга строительных работ в условиях использования новых технологий

  • Zhang C., Yang Q., Zhang J., Gou L., Fan H. Topic mining and future trend exploration in digital economy research. Information. 2023; 14(8): 432. https://doi.org/10.3390/info14080432
  • Amankwah-Amoah J., Khan Z., Wood G., Knight G. COVID-19 and digitalization: The great acceleration. Journal of Business Research. 2021; 136: 602–611. https://doi.org/10.1016/j.jbusres.2021.08.011
  • Shahadat M.M.H., Chowdhury A.H.M.Y, Nathan R.J., Fekete-Farkas M. Digital technologies for firms’ competitive advantage and improved supply chain performance. Journal of Risk and Financial Management. 2023; 16(2): 94. https://doi.org/10.3390/jrfm16020094
  • Jabir B, Rabhi L, Falih N. RNN- and CNN-based weed detection for crop improvement: an overview. Foods and Raw Materials. 2021; 9(2): 387–396. https://doi.org/10.21603/2308-4057-2021-2-387-396
  • Chin, H., Marasini, D.P. & Lee, D. Digital transformation trends in service industries. Service Business. 2023; 17: 11–36. https://doi.org/10.1007/s11628-022-00516-6
  • Calderon-Monge E., Ribeiro-Soriano D. The role of digitalization in business and management: a systematic literature review. Review of Managerial Science. 2023. https://doi.org/10.1007/s11846-023-00647-8
  • Asad U., Khan M., Khalid A., Lughmani W.A. Human-centric digital twins in industry: a comprehensive review of enabling technologies and implementation strategies. Sensors. 2023; 23(8): 3938. https://doi.org/10.3390/s23083938
  • Moreno T., Almeida A., Toscano C., Ferreira F., Azevedo A. Scalable Digital Twins for industry 4.0 digital services: a dataspaces approach. Production & Manufacturing Research. 2023; 11(1): 2173680. https://doi.org/10.3390/s23083938.10.1080/21693277.2023.2173680
  • Villalonga A., Negri E., Fumagalli L., Macchi M., Castaño F., Haber R. Local decision making based on distributed digital twin framework. IFAC-PapersOnLine. 2020; 53(2): 10568–10573. https://doi.org/10.1016/j.ifacol.2020.12.2806
  • Agrell C., Rognlien Dahl K., Hafver A. Optimal sequential decision making with probabilistic digital twins. SN Applied Sciences. 2023; 5: 114. https://doi.org/10.1007/s42452-023-05316-9
  • Sepasgozar S.M.E., Khan A.A., Smith K., Romero J.G., Shen X., Shirowzhan S., Li H., Tahmasebinia F. BIM and digital twin for developing convergence technologies as future of digital construction. Buildings. 2023; 13(2): 441. https://doi.org/10.3390/buildings13020441
  • Olanipekun A.O., Sutrisna M. Facilitating digital transformation in construction – a systematic review of the current state of the art. Frontiers in Built Environment. 2021; 7: 660758. https://www.frontiersin.org/articles/10.3389/fbuil.2021.660758
  • Luo H., Lin L., Chen K., Antwi-Afari M.F., Chen L. Digital technology for quality management in construction: A review and future research directions. Developments in the Built Environment. 2022; 12: 100087. https://doi.org/10.1016/j.dibe.2022.100087
  • Manzoor B., Othman I., Pomares J.C. Digital technologies in the architecture, engineering and construction (AEC) Industry – a bibliometric-qualitative literature review of research activities. International Journal of Environmental Research and Public Health. 2021; 18(11): 6135. https://doi.org/10.3390/ijerph18116135
  • Zhang Q., Chan A., Yang Y., Guan J., Choi T. Influence of learning from incidents, safety information flow, and resilient safety culture on construction safety performance. Journal of Management in Engineering. 2023; 39(3): https://doi.org/10.1061/JMENEA.MEENG-5223
  • Schnell P., Haag P., Jünger H.C. Implementation of digital technologies in construction companies: establishing a holistic process which addresses current barriers. Businesses. 2023; 3(1): 1–18. https://doi.org/10.3390/businesses3010001
  • Elrefaey O., Ahmed S., Ahmad I., El-Sayegh S. Impacts of COVID-19 on the use of digital technology in construction projects in the UAE. Buildings. 2022; 12(4): 489. https://doi.org/10.3390/buildings12040489
  • Papadonikolaki E., Krystallis I., Morgan, B. Digital technologies in built environment projects: review and future directions. Project Management Journal. 2022: 53 (5): 501–519. https://doi.org/10.1177/87569728211070225
  • Tung Y.-H., Chia F.-C., Yong F. Y.-Y. Exploring the usage of digital technologies for construction project management. Planning Malaysia. 2021; 19(17): 13–22. https://doi.org/10.21837/pm.v19i17.983
  • Милкина Ю.А., Макарова Е.Е. Внедрение современных информационных технологий в строительную отрасль // Организатор производства. 2021. Т. 29. № 3. С. 101–110. https://doi.org/10.36622/VSTU.2021.66.40.010.
  • Волкова Л.В. Совершенствование систем качества в строительстве на основе цифровых технологий // Известия вузов. Строительство. 2023. № 9. С. 68–79. https://doi.org/10.32683/0536-1052-2023-777-9-68-79
  • Романова Е.В., Магера Т.Н. Цифровые технологии в подготовке строителей: социальное взаимодействие в отрасли // Сметно-договорная работа в строительстве. 2022. № 2. С. 59–64. https://doi.org/10.33920/str-01-2202-09
  • Almujibah H. Assessment of building information modeling (BIM) as a time and cost-saving construction management tool: evidence from two-story villas in Jeddah. Sustainability. 2023; 15(9): 7354. https://doi.org/10.3390/su15097354
  • Kumar B. Building Information Modeling: Road to 2016. International Journal of 3-D Information Modeling. 2012; 1(4): 1–7. http://doi.org/10.4018/ij3dim.2012100101
  • Casini M. Extended reality for smart building operation and maintenance: a review. Energies. 2022; 15(10): 3785. https://doi.org/10.3390/en15103785
  • Chiu W.-B. Building information modeling application in engineering design performance prediction. International Journal of Structural and Civil Engineering Research. 2022; 11(1): 28–34. https://doi.org/10.18178/ijscer.11.1.28-34
  • Zhou X., Wang M., Liu Y.-S., Wang Q., Guo M., Zhao J. Heterogeneous network modeling and segmentation of building information modeling data for parallel triangulation and visualization. Automation in Construction. 2021; 131: 103897. https://doi.org/10.1016/j.autcon.2021.103897
  • Rahla Rabia M.P., Sathish Kumar D., Farooq J., Pachauri R.K. Applications of Building Information Modeling for COVID-19 spread assessment due to the organization of building artifacts. Data Science for COVID-19. 2022; 2: 319–333. http://doi.org/10.1016/B978-0-323-90769-9.00009-8
  • Taher A.H., Elbeltagi E.E. Integrating building information modeling with value engineering to facilitate the selection of building design alternatives considering sustainability. International Journal of Construction Management. 2023; 23(11): 1886–1901. https://doi.org/10.1080/15623599.2021.2021465
  • Halmetoja E. The conditions data model supporting building information models in facility management. Facilities. 2019; 37(7/8): 484–501. https://doi.org/10.1108/F-11-2017-0112
  • Abdel-Tawab M., Kineber A.F., Chileshe N., Abanda H., Ali A.H., Almukhtar A. Building information modelling implementation model for sustainable building projects in developing countries: a PLS-SEM approach. Sustainability. 2023; 15(12): 9242. https://doi.org/10.3390/su15129242
  • Skrzypczak I., Oleniacz G., Leśniak A., Zima K., Mrówczyńska M., Kazak J.K. Scan-to-BIM method in construction: assessment of the 3D buildings model accuracy in terms inventory measurements. Building Research & Information. 2022; 50(8): 859–880. https://doi.org/10.1080/09613218.2021.2011703
  • Rashdi R., Martínez-Sánchez J., Arias P., Qiu Z. Scanning technologies to building information modelling: a review. Infrastructures. 2022; 7(4): 49. https://doi.org/10.3390/infrastructures7040049
  • Nap M-E., Chiorean S., Cira C-I., Manso-Callejo M-Á., Păunescu V., Șuba E-E., Sălăgean T. Non-destructive measurements for 3D modeling and monitoring of large buildings using terrestrial laser scanning and unmanned aerial systems. Sensors. 2023; 23(12): 5678. https://doi.org/10.3390/s23125678
  • Kartini G.A.J., Saputri N.D. 3D Modeling of Bosscha Observatory with TLS and UAV integration data. Geoplanning: Journal of Geomatics and Planning. 2022; 9(1): 37–46. https://doi.org/10.14710/geoplanning.9.1.37-46
  • Ibrahimkhil M.H., Shen X., Barati K., Wang C.C. Dynamic progress monitoring of masonry construction through mobile SLAM mapping and as-built modeling. Buildings. 2023; 13(4): 930. https://doi.org/10.3390/buildings13040930
Еще
Статья научная