Упругопластическая задача в случае неоднородной пластичности в условиях сложного сдвига
Автор: Сенашов С.И., Савостьянова И.Л., Черепанова О.Н.
Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau
Рубрика: Информатика, вычислительная техника и управление
Статья в выпуске: 2 т.21, 2020 года.
Бесплатный доступ
В работе решена плоская упругопластическая задача о напряженном состоянии в условиях сложного сдвига в теле, ослабленном отверстием, которое ограничено кусочно гладким контуром. Напряженное состояние сложного сдвига возникает в цилиндрическом теле бесконечной длины под действием нагрузок, направленных по образующим цилиндра и постоянным вдоль образующих. При этом при достаточно большой нагрузке в теле возникают как упругие, так и пластические зоны. Как и в любой задаче подобного рода, возникает необходимость в нахождении заранее неизвестной границы, разделяющей упругую и пластическую зоны. Отыскание такой границы непростая задача, но специфика упругопластических задач о сложном сдвиге состоит в том, что решение подобных задач проще, чем решение аналогичных упругих задач. По-видимому, впервые этот факт отметил Г. П. Черепанов. Упругопластическим задачам о сложном сдвиге в случае однородной и изотропной пластичности посвящена обширная литература. Во всех статьях, в которых решаются задачи о сложном сдвиге, существенно используют представление напряжений и смещений в упругой зоне в комплексном виде. В предлагаемой работе решены задачи о сложном сдвиге с помощью законов сохранения. При этом предполагается, что предел текучести является функцией от координат точки, в которой исследуется напряженное состояние. Известно, что упругие свойства конструкционных материалов могут быть однородными и изотропными, а при этом их предел текучести и прочности - неоднородным. Такая ситуация наблюдается, например, при нейтронной бомбардировке конструкционных материалов. В данной статье будет изучена именно такая ситуация. В статье приведены законы сохранения для уравнений, описывающих сложный сдвиг. При этом предполагалось, что компоненты сохраняющегося тока зависят от компонент тензора напряжений и координат. Компоненты тензора напряжений входят в них линейно. Задача о нахождении компонент сохраняющегося тока свелась к системе Коши-Римана. Решение этой системы позволило свести вычисления компонент тензора напряжений к криволинейному интегралу по контуру отверстия и тем самым найти границу между упругой и пластической областями. (Русскоязычная версия представлена по адресу https://vestnik.sibsau.ru/articles/?id=677)
Упругопластическая задача, неоднородная пластичность, сложный сдвиг, законы сохранения
Короткий адрес: https://sciup.org/148321966
IDR: 148321966 | DOI: 10.31772/2587-6066-2020-21-2-201-205
Список литературы Упругопластическая задача в случае неоднородной пластичности в условиях сложного сдвига
- Annin B. D., CHerepanov G. P. Uprugo plasticheskaya zadacha. [Elastic plastic task] Novosibirsk, Nauka Publ., 1983, 239 p.
- Senashov S. I. [On the laws of conservation of plasticity equations]. Dokl. AN SSSR. 1991, Vol. 320, No. 3, P. 606-608 (In Russ.).
- Senashov S. I., Filyushina E. V. Uprugop-lasticheskie zadachi dlya ortotropnyh sred. [Elastic-plastic problems for orthotropic environments]. Krasnoyarsk, SibGU im. M. F. Reshetneva Publ., 2017, 116 p.
- Kiryakov P. P., Senashov S. I., Yahno A. N. Prilozhenie simmetrij i zakonov sohraneniya k resheniyu differencial'nyh uravneniy. [Application of symmetries and conservation laws to the solution of differential equations]. Novosibirsk, Nauka Publ., 2001, 192 p.
- Senashov S. I., Gomonova O. V., Yahno A. N. Matematicheskie voprosy dvumernyh uravnenij ideal'noj plastichnosti. [Mathematical problems of two-dimensional equations of ideal plasticity] Sib. gos. aerokosmich. un-t. Krasnoyarsk, 2012. 139 p.
- Ivlev D. D. et al. Predel'noe sostoyanie deformirovannyh tel i gornyh porod [Limit state of deformed bodies and rocks]. Moscow, FIZMTLIT Publ., 2008.
- Senashov S. I., Filyushina E. V. [Analytical solution of the problem of the load wave in an elastic-plastic rod]. Dinamika sploshn. sredy. 2012, No. 127.
- Senashov S. I., Filyushina E. V., Gomonova O. V. [Building elastic-plastic boundaries using conservation laws]. Vestnik SibGAU. 2015, Vol. 16, No. 2, P. 343-359 (In Russ.).
- Senashov S. I., Kondrin A. V. [Development of an information system for finding the elastic-plastic boundary of rolling profile rods]. Vestnik SibGAU. 2014, No. 4(56), P. 119-125 (In Russ.).
- Senashov S. I., Cherepanova O. N., Kondrin A. V. [About elastic-plastic torsion of a rod]. Vestnik SibGAU. 201, No. 3(49), P. 100-103 (In Russ.).
- Senashov S. I., Cherepanova O. N., Kondrin A. V. Elastoplastic Torsion of a Rod with MultiplyConnected Cross-Section. J. Siberian Federal Univ. Math. & Physics. 2015, No. 7(1), P. 343-351.
- Senashov S. I., Cherepanova O. N., Kondrin A. V. On Elastoplastic Bending of Beam. J. Siberian Federal Univ. Math. & Physics. 2014, No. 7(2), P. 203-208.
- Ol'shak V., Mruz Z., Pezhina P. Neodnorodnaya teoriya plastichnosti [Heterogeneous theory of plasticity] Moscow, Mir Publ., 1964, 156 p.
- Senashov S. I., Vinogradov A. M. Symmetries and conservation laws of 2-dimensional ideal plasticity. Proc. EdinburgMath. Soc. 1988, Vol. 3(2), P. 415-439.
- Annin B. D., Bytev V. O., Senashov S. I. Gruppovye svojstva uravnenij uprugosti i plastichnosti [Group properties of elasticity and plasticity equations]. Novosibirsk, Nauka Publ., 1985, 143 p.